Mahmoud Miari
Publications
Filters
total: 16
Catalog Publications
Year 2024
-
Torsional earthquake-induced pounding between adjacent buildings founded on different soil types
PublicationThis paper investigates the effect of the soil type on the torsional response of build- ings experiencing torsional pounding due to earthquake excitations. Six buildings (one 4-storey building and five 6-storey buildings) with different configurations have been considered. First, pounding between different structures has been analysed for a specified soil type and the effect of the torsional pounding and the contact asymmetry on...
Year 2023
-
Analysis of the effect of the seismic gap on the response of buildings experiencing pounding during earthquakes
PublicationThe aim of this paper is to investigate the effect of the seismic gap on the dynamic response of buildings experiencing earthquake-induced pounding. Three buildings have been analysed, which are 5-storey, 7-storey and 9-storey structures. Three possible pounding scenarios have been considered, which are pounding between 5-storey and 7-storey buildings, pounding between 5-storey and 9-storey buildings and pounding between 7-storey...
-
Assessment of codes recommendations for the evaluation of the seismic gap of buildings founded on different soil types
PublicationSeveral equations have been proposed in the literature to evaluate the seismic gap preventing earthquake-induced structural pounding, such as the ones based on the absolute sum of the peak displacements (ABS), the square root of the sum of the squares (SRSS), the double difference method (DDC), Australian code and the approach proposed by Naderpour et al. The aim of this paper is to investigate the accuracy of these equations taking...
-
Effective Equations for the Optimum Seismic Gap Preventing Earthquake-Induced Pounding between Adjacent Buildings Founded on Different Soil Types
PublicationThe best approach to avoid collisions between adjacent structures during earthquakes is to provide sufficient spacing between them. However, the existing formulas for calculating the optimum seismic gap preventing pounding were found to provide inaccurate results upon the consideration of different soil types. The aim of this paper is to propose new equations for the evaluation of the sufficient in-between separation gap for buildings...
-
Shaking table experimental study on models of steel buildings with different types of joints
PublicationThe aim of this paper is to study the response of models of steel buildings with destroyed and non-destroyed joints. The study was conducted experimentally using the shaking table tests. Two steel models were considered. Several types of joints were taken into account: totally destroyed joints, partially destroyed joints, welded joints and joints stiffened with additional metal. Six ground motions were taken into account. The acceleration...
Year 2022
-
Analysis of floor-to-column pounding of buildings founded on different soil types
PublicationThe aim of this study is to investigate the effect of the soil type on buildings experiencing floor-to-column pounding during earthquakes. Five buildings with 4-storeys, 6-storeys, and 7-storeys were considered. Three types of the 4-storey building with different total heights were taken into account which leads to floor-to-column pounding at 1/3, 1/2 and 2/3 of the height of the impacted column. Two pounding scenarios were considered,...
-
Analysis of pounding between adjacent buildings founded on different soil types
PublicationEarthquake-induced pounding was experienced in many previous earthquakes and it was found to be a critical issue. This study investigates the effect of pounding between buildings founded on the same and different soil types. Three 3-D buildings with 4, 6 and 8 storeys were considered in this study. Three pounding scenarios were taken into account, i.e. pounding between 4-storey and 6-storey buildings, between 4-storey and 8-storey...
-
Incremental dynamic analysis and fragility assessment of buildings founded on different soil types experiencing structural pounding during earthquakes
PublicationThe effect of the soil type on buildings experiencing pounding during earthquakes is investigated in this study using the incremental dynamic analysis and fragility assessment methods. Three 3-D structures with different number of storeys (4, 6 and 8) were considered in this study. Three pounding scenarios between these three buildings were taken into account, i.e. pounding between 4-storey and 6-storey buildings, between 4-storey...
-
Incremental Dynamic Analysis and Fragility Assessment of Buildings with Different Structural Arrangements Experiencing Earthquake-Induced Structural Pounding
PublicationStructural pounding is considered as one of the most critical phenomena occurring during earthquakes. This paper presents the incremental dynamic analysis and fragility assessment of buildings experiencing earthquake-induced pounding. Three 3-D buildings with different number of storeys and under different structural arrangements have been considered. Three pounding scenarios have been taken into account, i.e. pounding between...
-
Pounding between high-rise buildings with different structural arrangements
PublicationEarthquake-induced structural pounding has led to significant damages during previous earthquakes. This paper investigates the effect of pounding on the dynamic response of colliding high-rise buildings with different structural arrangements. Three 3-D buildings are considered in the study, including 5-storey building, 7-storey building and 9-storey building. Three pounding scenarios are also taken into account, i.e. pounding between...
-
Seismic gap between buildings founded on different soil types experiencing pounding during earthquakes
PublicationSeveral formulas have been suggested in the literature to evaluate the minimum seismic gap that would prevent collisions between adjacent buildings during earthquakes, including those based on the absolute sum of the peak displacements (ABS), square root of the sum of the squares (SRSS), the double difference method (DDC), Australian code, and approach proposed by Naderpour et al. The aim of the present study is to evaluate the...
-
Shaking table experimental study on pounding between adjacent structures founded on different soil types
PublicationThe aim of this study is to extensively investigate the effect of the soil type on the response of colliding structures based on shaking table experimental tests. Two single-storey models of steel buildings with different dynamic parameters were considered in this study. Three pounding scenarios were taken into account by applying different seismic gaps (0.5 cm, 1 cm and 1.5 cm as well as the no pounding case). First, the effect...
Year 2021
-
Investigating the effects of structural pounding on the seismic performance of adjacent RC and steel MRFs
PublicationAn insufficient separation distance between adjacent buildings is the main reason for structural pounding during severe earthquakes. The lateral load resistance system, fundamental natural period, mass, and stiffness are important factors having the influence on collisions between two adjacent structures. In this study, 3-, 5- and 9-story adjacent reinforced concrete and steel Moment Resisting Frames (MRFs) were considered to investigate...
-
Pounding between high-rise buildings founded on different soil types
PublicationEarthquake-induced pounding is a phenomenon that has been often experienced in previous earthquakes. The aim of this study is to investigate the effect of the soil type on high-rise buildings experiencing earthquake induced-pounding. Pounding between 7-storey and 9-storey buildings is examined under five soil types defined in the ASCE 7-10 code which are hard rock, rock, very dense soil and soft rock, stiff soil and soft clay soil....
-
Seismic Pounding Between Bridge Segments: A State-of-the-Art Review
PublicationEarthquake-induced structural pounding in bridge structures has been observed in several previous seismic events. Collisions occur at the expansion joints provided between adjacent decks or between the deck and abutment. Pounding between the structural elements may lead to severe damages and even to the unseating of the bridge in certain cases. Several investigations have been performed to study pounding in bridges under uniform...
Year 2019
-
Seismic pounding between adjacent buildings: Identification of parameters, soil interaction issues and mitigation measures
PublicationStructural pounding has been observed in many previous earthquakes due to insufficient gap commonly provided between adjacent structures. The collisions usually generate large impact forces and short duration acceleration pulses which may result in significant damage to the colliding buildings. Because of that, earthquake induced structural pounding has been intensively studied and investigated for the last three decades. Results...
seen 984 times