A bisection‐based heuristic for rapid EM‐driven multiobjective design of compact impedance transformers - Publication - Bridge of Knowledge

Search

A bisection‐based heuristic for rapid EM‐driven multiobjective design of compact impedance transformers

Abstract

Design of microwave structures is a multiobjective task where several conflicting requirements have to be considered at the same time. For contemporary circuits characterized by complex geometries, multiobjective optimization cannot be performed using standard population‐based algorithms due to high cost of electromagnetic (EM) evaluations. In this work, we propose a deterministic approach for fast EM‐driven multiobjective design of microwave structures. Our Pareto ranking bisection algorithm (PRBA) generates candidate designs by dividing the line segments connecting previously obtained Pareto optimal solutions and refining them by means of poll‐type search involving Pareto ranking. Computational efficiency of the optimization process is ensured by a small number of objective function evaluations required by PRBA as well as by executing the algorithm using the low‐fidelity EM model of the structure at hand. The algorithm is demonstrated using a compact impedance transformer. Experimental validation is also provided.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cite as

Full text

full text is not available in portal

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS no. 32, pages 1 - 7,
ISSN: 0894-3370
Language:
English
Publication year:
2019
Bibliographic description:
Bekasiewicz A., Kozieł S.: A bisection‐based heuristic for rapid EM‐driven multiobjective design of compact impedance transformers// INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS -Vol. 32,iss. 2 (2019), s.1-7
DOI:
Digital Object Identifier (open in new tab) 10.1002/jnm.2523
Verified by:
Gdańsk University of Technology

seen 136 times

Recommended for you

Meta Tags