Abstract
Most of the flows occurring in the engineering systems are turbulent and their accurate numerical analysis is still challenging, especially when combined with the heat transfer. One of the methods of heat transfer enhancement is utilization of the turbulent impinging jets, which were recently applied also in the heat exchangers. Their positive impact on the heat transfer performance was proven, but many questions related to its origin are still unanswered. In general, the wall-jet interaction and the near-wall turbulence are supposed to be its main reason. The authors are interested in construction of the numerical model assuring the results as close as possible to the experimental one and then modelling the transport processes in the heat exchanger. The most difficult area to model is the stagnation region, where the thermal effects are strongly affected by the conditions in the pipe/nozzle/orifice, from which the jet is originated. In the following article, summary of authors’ findings, regarding significance of the velocity profile or turbulence intensity at the inlet, are presented. In addition, qualitative analysis of the heat transfer enhancement is included, in relation to the inlet conditions.
Authors (5)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Conference activity
- Type:
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Language:
- English
- Publication year:
- 2019
- Bibliographic description:
- Kura T., Fornalik-Wajs E., Wajs J., Kenjeres S., Gurgul S.: A numerical analysis of the thermal effects in the jet impingement stagnation zone// / : , 2019, s.1807-1819
- Verified by:
- Gdańsk University of Technology
seen 133 times
Recommended for you
Thermal and Hydrodynamic Phenomena in the Stagnation Zone — Impact of the Inlet Turbulence Characteristics on the Numerical Analyses
- T. Kura,
- J. Wajs,
- E. Fornalik-Wajs
- + 2 authors
Heat transfer intensification by jet impingement – numerical analysis using RANS approach
- T. Kura,
- E. Fornalik-Wajs,
- J. Wajs
- + 1 authors
Curved Surface Minijet Impingement Phenomena Analysed with ζ-f Turbulence Model
- T. Kura,
- E. Fornalik-Wajs,
- J. Wajs
- + 1 authors
Local Nusselt number evaluation in the case of jet impingement
- T. Kura,
- E. Fornalik-Wajs,
- J. Wajs
- + 1 authors