Activation of N2O and SO2 by the P–B Bond System. Reversible Binding of SO2 by the P–O–B Geminal Frustrated Lewis Pair - Publication - Bridge of Knowledge

Search

Activation of N2O and SO2 by the P–B Bond System. Reversible Binding of SO2 by the P–O–B Geminal Frustrated Lewis Pair

Abstract

Herein, we present the first transformation of borylphosphine into borylphosphinite using nitrous oxide. Borylphosphine reacts with N2O via insertion of a single oxygen atom into the P−B bond and formation of a P−O−B bond system. Borylphosphine and borylphosphinite capture SO2 and activate it in an irreversible and reversible manner, respectively.

Citations

  • 2 4

    CrossRef

  • 0

    Web of Science

  • 2 4

    Scopus

Cite as

Full text

download paper
downloaded 86 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
INORGANIC CHEMISTRY no. 59, pages 6332 - 6337,
ISSN: 0020-1669
Language:
English
Publication year:
2020
Bibliographic description:
Szynkiewicz N., Chojnacki J., Grubba R.: Activation of N2O and SO2 by the P–B Bond System. Reversible Binding of SO2 by the P–O–B Geminal Frustrated Lewis Pair// INORGANIC CHEMISTRY -Vol. 59,iss. 9 (2020), s.6332-6337
DOI:
Digital Object Identifier (open in new tab) 10.1021/acs.inorgchem.0c00435
Bibliography: test
  1. Légaré, M. A.; Pranckevicius, C.; Braunschweig, H. Metallomimetic Chemistry of Boron. open in new tab
  2. Chem. Rev. 2019, 119 (14), 8231-8261 DOI: 10.1021/acs.chemrev.8b00561. open in new tab
  3. Power, P. P. Main-Group Elements as Transition Metals. Nature 2010, 463 (7278), 171- open in new tab
  4. Severin, K. Synthetic Chemistry with Nitrous Oxide. Chem. Soc. Rev. 2015, 44 (17), 6375- 6386 DOI: 10.1039/c5cs00339c. open in new tab
  5. Otten, E.; Neu, R. C.; Stephan, D. W. Complexation of Nitrous Oxide by Frustrated Lewis Pairs. J. Am. Chem. Soc. 2009, 131 (29), 9918-9919 DOI: 10.1021/ja904377v. open in new tab
  6. Neu, R. C.; Otten, E.; Lough, A.; Stephan, D. W. The Synthesis and Exchange Chemistry of Frustrated Lewis Pair-Nitrous Oxide Complexes. Chem. Sci. 2011, 2 (1), 170-176 DOI: 10.1039/c0sc00398k. open in new tab
  7. Mo, Z.; Kolychev, E. L.; Rit, A.; Campos, J.; Niu, H.; Aldridge, S. Facile Reversibility by Design: Tuning Small Molecule Capture and Activation by Single Component Frustrated Lewis Pairs. J. Am. Chem. Soc. 2015, 137 (38), 12227-12230 DOI: 10.1021/jacs.5b08614. open in new tab
  8. Tskhovrebov, A. G.; Solari, E.; Wodrich, M. D.; Scopelliti, R.; Severin, K. Covalent Capture of Nitrous Oxide by N-Heterocyclic Carbenes. Angew. Chemie -Int. Ed. 2012, 51 (1), 232-234 DOI: 10.1002/anie.201106589. open in new tab
  9. Tskhovrebov, A. G.; Vuichoud, B.; Solari, E.; Scopelliti, R.; Severin, K. Adducts of Nitrous Oxide and N-Heterocyclic Carbenes: Syntheses, Structures, and Reactivity. J. Am. Chem. open in new tab
  10. Soc. 2013, 135 (25), 9486-9492 DOI: 10.1021/ja4030287. open in new tab
  11. Staudinger, H.; Hauser, E. Über Neue Organische Phosphorverbindungen IV Phosphinimine. Helv. Chim. Acta 1921, 4 (1), 861-886 DOI: 10.1002/hlca.19210040192. open in new tab
  12. Woolven, H.; González-Rodríguez, C.; Marco, I.; Thompson, A. L.; Willis, M. C. DABCO- Bis (Sulfur Dioxide), DABSO, as a Convenient Source of Sulfur Dioxide for Organic Synthesis: Utility in Sulfonamide and Sulfamide Preparation. Org. Lett. 2011, 13 (18), 4876-4878 DOI: 10.1021/ol201957n. open in new tab
  13. Smith, B. C.; Smith, G. H. 1028. Sulphur Dioxide. Part II. Reactions of Tertiary Phosphines 18 with Sulphur Dioxide. J. Chem. Soc. 1965, 5516 DOI: 10.1039/jr9650005516. open in new tab
  14. Buß, F.; Rotering, P.; Mück-LichtenfeldComputational Chemistry, C.; Dielmann, F. Crystalline, Room-Temperature Stable Phosphine-SO2 Adducts: Generation of Sulfur Monoxide from Sulfur Dioxide. Dalton Trans. 2018, 47 (31), 10420-10424 DOI: 10.1039/c8dt01484a. open in new tab
  15. Aders, N.; Keweloh, L.; Pleschka, D.; Hepp, A.; Layh, M.; Rogel, F.; Uhl, W. P-H Functionalized Al/P-Based Frustrated Lewis Pairs in Dipolar Activation and Hydrophosphination: Reactions with CO2 and SO2. Organometallics 2019, 38 (14), 2839- 2852 DOI: 10.1021/acs.organomet.9b00346. open in new tab
  16. Adenot, A.; von Wolff, N.; Lefèvre, G.; Berthet, J. C.; Thuéry, P.; Cantat, T. Activation of SO2 by N/Si+ and N/B Frustrated Lewis Pairs: Experimental and Theoretical Comparison with CO2 Activation. Chem. -A Eur. J. 2019, 25 (34), 8118-8126 DOI: 10.1002/chem.201901088. open in new tab
  17. Sajid, M.; Klose, A.; Birkmann, B.; Liang, L.; Schirmer, B.; Wiegand, T.; Eckert, H.; Lough, A. J.; Fröhlich, R.; Daniliuc, C. G.; Grimme, S.; Stephan, D. W.; Kehr, G.; Erker, G. Reactions of Phosphorus/Boron Frustrated Lewis Pairs with SO2. Chem. Sci. 2013, 4 (1), 213-219 DOI: 10.1039/c2sc21161k. open in new tab
  18. Lavigne, F.; Maerten, E.; Alcaraz, G.; Branchadell, V.; Saffon-Merceron, N.; Baceiredo, A. Activation of CO2 and SO2 by Boryl(Phosphino)Carbenes. Angew. Chemie -Int. Ed. 2012, 51 (10), 2489-2491 DOI: 10.1002/anie.201108452. open in new tab
  19. Szynkiewicz, N.; Ponikiewski, Ł.; Grubba, R. Symmetrical and Unsymmetrical Diphosphanes with Diversified Alkyl, Aryl and Amino Substituents. Dalton Trans. 2018, 47 (47), 16885-16894 DOI: 10.1039/c8dt03775b. open in new tab
  20. Szynkiewicz, N.; Ponikiewski, L.; Grubba, R. Diphosphination of CO2 and CS2 Mediated by Frustrated Lewis Pairs-Catalytic Route to Phosphanyl Derivatives of Formic and Dithioformic Acid. Chem. Commun. 2019, 55 (20), 2928-2931 DOI: 10.1039/c9cc00621d. open in new tab
  21. Szynkiewicz, N.; Ordyszewska, A.; Chojnacki, J.; Grubba, R. Diaminophosphinoboranes: Effective Reagents for Phosphinoboration of CO2. RSC Adv. 2019, 9 (48), 27749-27753 DOI: 10.1039/C9RA06638A. open in new tab
  22. Ordyszewska, A.; Szynkiewicz, N.; Perzanowski, E.; Chojnacki, J.; Wiśniewska, A.; Grubba, R. Structural and Spectroscopic Analysis of a New Family of Monomeric Diphosphinoboranes. Dalton Trans. 2019, 48 (33), 12482-12495 DOI: 10.1039/c9dt02195g. open in new tab
  23. Bailey, J. A.; Pringle, P. G. Monomeric Phosphinoboranes. Coord. Chem. Rev. 2015, 297- 298, 77-90 DOI: 10.1016/j.ccr.2015.02.001. open in new tab
  24. Bailey, J. A.; Sparkes, H. A.; Pringle, P. G. Single Oxygen-Atom Insertion into p-b Bonds: On-and off-Metal Transformation of a Borylphosphine into a Borylphosphinite. Chem. -A Eur. J. 2015, 21 (14), 5360-5363 DOI: 10.1002/chem.201500378. open in new tab
  25. Pyykkö, P.; Atsumi, M. Molecular Single-Bond Covalent Radii for Elements 1-118. Chem. -A Eur. J. 2009, 15 (1), 186-197 DOI: 10.1002/chem.200800987. open in new tab
  26. Wang, Y.; Li, Z. H.; Wang, H. Synthesis of an Oxygen-Linked Germinal Frustrated Lewis Pair and Its Application in Small Molecule Activation. RSC Adv. 2018, 8 (46), 26271-26276 DOI: 10.1039/c8ra05108a. open in new tab
  27. Zhu, D.; Qu, Z.; Stephan, D. W. Addition Reactions and Diazomethane Capture by the Intramolecular P-O-B FLP: tBu2POBcat. Dalton Trans. 2020, 1772 DOI: 10.1039/C9DT04560K. open in new tab
  28. Shieh, M.; Ho, C. H.; Sheu, W. S.; Chen, H. W. Selective Insertion of Oxygen and Selenium into an Electron-Precise Aramagnetic Selenium-Manganese Carbonyl Cluster [Se6Mn 6(CO)18]4-. J. Am. Chem. Soc. 2010, 132 (12), 4032-4033 DOI: 10.1021/ja9091566. open in new tab
  29. Cristóbal, C.; Álvarez, E.; Paneque, M.; Poveda, M. L. Facile Oxygen Atom Insertion into Unactivated C(Sp3)-C(Sp2) Single Bonds in Reactions of Iridium(III) Complexes with O2. Organometallics 2013, 32 (2), 714-717 DOI: 10.1021/om300890d. open in new tab
  30. Leisch, H.; Morley, K.; Lau, P. C. K. Baeyer-Villiger Monooxygenases: More than Just Green Chemistry. Chem. Rev. 2011, 111 (7), 4165-4222 DOI: 10.1021/cr1003437. open in new tab
  31. Nöth, H.; Schrägle, W. Beiträge Zur Chemie Des Bors, XXX. Zur Kenntnis von Monomerem Bis(Dimethylamino)-Diäthylphosphino-Boran. Chem. Ber. 1964, 97 (8), 2218-2229 DOI: 10.1002/cber.19640970818. open in new tab
  32. Pyykkö, P.; Atsumi, M. Molecular Double-Bond Covalent Radii for Elements Li-E112.
  33. Chem. -A Eur. J. 2009, 15 (46), 12770-12779 DOI: 10.1002/chem.200901472. open in new tab
  34. Bertini, F.; Lyaskovskyy, V.; Timmer, B. J. J.; de Kanter, F. J. J.; Lutz, M.; Ehlers, A. W.; Slootweg, J. C.; Lammertsma, K. Preorganized Frustrated Lewis Pairs. J. Am. Chem. Soc. 2012, 134 (1), 201-204 DOI: 10.1021/ja210214r. open in new tab
  35. Habraken, E. R. M.; Mens, L. C.; Nieger, M.; Lutz, M.; Ehlers, A. W.; Slootweg, J. C. Reactivity of the Geminal Phosphinoborane tBu2PCH2BPh2 towards Alkynes, Nitriles, and Nitrilium Triflates. Dalton Trans. 2017, 46 (36), 12284-12292 DOI: 10.1039/C7DT02570J. open in new tab
  36. Corbridge, D. E. C. Phosphorus : Chemistry, Biochemistry and Technology, 6th ed.; CRC Press, 2013. open in new tab
  37. Christiansen, A.; Li, C.; Garland, M.; Selent, D.; Ludwig, R.; Spannenberg, A.; Baumann, W.; Franke, R.; Börner, A. On the Tautomerism of Secondary Phosphane Oxides. European open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 146 times

Recommended for you

Meta Tags