Ammonia amendment promotes high rate lactate production and recovery from semi-continuous food waste fermentation - Publication - Bridge of Knowledge

Search

Ammonia amendment promotes high rate lactate production and recovery from semi-continuous food waste fermentation

Abstract

In this study, a reliable approach using ammonia nitrogen was proposed to increase lactate production during semi-continuous food waste (FW) fermentation under mesophilic conditions. Both free ammonia nitrogen (FAN) and ammonium ion (NH4+-N) were present in mesophilic reactors, with a wide FAN/NH4+-N ratio variation due to the intermittent pH control. The investigation of responsible mechanisms revealed that the increased production yield of LA was associated with the acceleration of solubilization, hydrolysis, glycolysis and acidification. The presence of FAN and NH4+-N in proper concentrations increased lactate production by 2.4 folds and recovered lactate production to 24.5 g COD/L from low rate control reactor (9.6 g COD/L) under mesophilic conditions. Furthermore, the microorganisms responsible for LA accumulation (Bavariicoccus, Enterococcus, Bifidobacterium and Corynebacterium) were selectively enriched, and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways associated with carbohydrate transport and LA production were enhanced in nitrogen fed reactors.

Citations

  • 1 9

    CrossRef

  • 0

    Web of Science

  • 1 7

    Scopus

Authors (9)

Cite as

Full text

full text is not available in portal

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
BIORESOURCE TECHNOLOGY no. 302, pages 1 - 18,
ISSN: 0960-8524
Language:
English
Publication year:
2020
Bibliographic description:
Zhang A., Li X., He Y., Xu X., Chen H., Zhang A., Liu Y., Xue G., Mąkinia J.: Ammonia amendment promotes high rate lactate production and recovery from semi-continuous food waste fermentation// BIORESOURCE TECHNOLOGY -Vol. 302, (2020), s.1-18
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.biortech.2020.122881
Sources of funding:
  • This work was supported by National Natural Science Foundation of China (NSFC) (51878137, 51878136, 51878135); the Fundamental Research Funds for the Central Universities and the Donghua University Distinguished Young Professor Program; Shanghai Chen-Guang Program (17CG34).
Verified by:
Gdańsk University of Technology

seen 82 times

Recommended for you

Meta Tags