Application of the Optimization Methods to the Search of Marine Propulsion Shafting Global Equilibrium in Running Condition - Publication - Bridge of Knowledge

Search

Application of the Optimization Methods to the Search of Marine Propulsion Shafting Global Equilibrium in Running Condition

Abstract

Full film hydrodynamic lubrication of marine propulsion shafting journal bearings in running condition is discussed. Considerable computational difficulties in non-linear determining the quasi-static equilibrium of the shafting are highlighted. The approach using two optimization methods (the particle swarm method and the interior point method) in combination with the specially developed relaxation technique is proposed to overcome this problem. The developed algorithm allows calculating marine propulsion shafting bending taking into account lubrication in all journal bearings and exact form of journal inside bearings, compared to most of the publications that consider lubrication only in the aftmost stern tube bearing and suppose rest of bearings as pointwise. The calculation results of typical shafting design with four bearings are provided. The significance of taking into account lubrication in all bearings is shown, specifically more exact values of bearings’ reactions, shafting deflections, minimum film thickness and maximum hydrodynamic pressure in the stern tube bearing in case of considering lubrication in all bearings.

Citations

  • 3

    CrossRef

  • 0

    Web of Science

  • 4

    Scopus

Authors (3)

Cite as

Full text

download paper
downloaded 17 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Polish Maritime Research no. 26, pages 172 - 180,
ISSN: 1233-2585
Language:
English
Publication year:
2019
Bibliographic description:
Ursolov A., Batrak Y., Tarełko W.: Application of the Optimization Methods to the Search of Marine Propulsion Shafting Global Equilibrium in Running Condition// Polish Maritime Research -Vol. 26,iss. 3 (2019), s.172-180
DOI:
Digital Object Identifier (open in new tab) 10.2478/pomr-2019-0058
Bibliography: test
  1. Andreau C., Ferdi F., Ville R. et al.: A method for determination of elastohydrodynamic behavior of line shafting bearings in their environment. In Proceedings of ASME/STLE International Joint Tribology Conference, San Diego, 2007. DOI:10.1115/IJTC2007-44056. open in new tab
  2. Batrak Y.: New CAE package for propulsion train calculations. International conference on computer applications in shipbuilding, 3, Vol. 2., (2009). pp. 187-192. open in new tab
  3. Batrak Y. A., Shestopal V. P., Batrak R. Y.: Propeller hydrodynamic loads in relation to propulsion shaft alignment and vibration calculations. Proceedings of the Propellers/ Shafting Symposium., 2012.
  4. Byrd R. H., Hribar M.E., Nocedal J.: An interior point algorithm for large-scale nonlinear programming. SIAM J Optimization, 9(4) , (1999), pp. 877-900. DOI:10.1137/ S1052623497325107. open in new tab
  5. de Kraker A., Ostayena R. A. J. and Rixen D. J.: Calculation of Stribeck curves for (water) lubricated journal bearings. Tribology International, 40, (2007), pp. 459-469. DOI:10.1016/j.triboint.2006.04.012. open in new tab
  6. Gurr C., Rulfs H.: Influence of transient operating conditions on propeller shaft bearings. Journal of Marine Engineering and Technology, 7(2) (2008), pp. 3-11. DOI:10.1080/2046 4177.2008.11020209. open in new tab
  7. Ηirani Η., Rao Τ. V., Αthre, Κ. et al.: Rapid performance evaluation of journal bearings. Tribology International, 30 (11) (1997), pp. 825-834. DOI:10.1016/ S0301-679X(97)00066-2 open in new tab
  8. Hutchinson J. R.: Shear coefficients for Timoshenko beam theory. Journal of Applied Mechanics, 68(1), (2001), pp. 87-92. coefficientsfortimoshenkobeamtheory. open in new tab
  9. Kennedy J., Eberhart R.: Particle swarm optimization. Proceedings of ICNN'95 -International Conference on Neural Networks, Vol 4, (1995), pp. 1942-1948. DOI:10.1109/ICNN.1995.488968. open in new tab
  10. Litwin W.: Water-lubricated bearings of ship propeller shafts -Problems, experimental tests and theoretical investigations. Polish Maritime Research, 4(62), Vol 16, (2009) , pp. 42-50. open in new tab
  11. Litwin W.: Influence of main design parameters of ship propeller shaft water-lubricated bearings on their properties. Polish Maritime Research, 4(67), Vol 17, (2010), pp. 39-45. open in new tab
  12. Mourelatos Z.P., Parsons M. G.: Finite-element analysis of elastohydrodynamic stern bearings. SNAME Transactions, 93(11), (1985), pp. 225-259.
  13. Poli R.: Analysis of the publications on the applications of particle swarm optimisation. Journal of Artificial Evolution and Applications, 2008. DOI:10.1155/2008/685175. open in new tab
  14. Przemieniecki J. S.: Theory of matrix structural analysis, Dover Publications Inc., New York, 1968. open in new tab
  15. Segerlind L. J. (1976). Applied Finite Element Analysis, 1 ed., John Wiley and Sons Inc., New York/London/Sydney/ Toronto.
  16. ShaftDesigner -the shaft calculation software (2018). Retrieved from http://www.shaftdesigner.com/. open in new tab
  17. ShaftDesigner -the shaft calculation software by IMT (2018). Retrieved from http://shaftsoftware.com/. open in new tab
  18. Shi Y., Eberhart R. A.: Мodified particle swarm optimizer. 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360), 1998, pp. 69-73. DOI:10.1109/ICEC.1998.699146. open in new tab
  19. Stachowiak G. W., Batchelor A. W.: Engineering tribology, Butterworth Heinemann. 2001. open in new tab
  20. Vulic N.: Advanced shafting alignment: Behaviour of shafting in operation. Brodogradnja, 52, (2004), pp. 203-212. open in new tab
  21. Waltz R., Morales J., Nocedal J. et al.: An interior algorithm for nonlinear optimization that combines line search and trust region steps. Mathematical Programming, 107(3), (2006) , pp. 391-408. DOI:10.1007/s10107-004-0560-5. open in new tab
  22. Wright M. H.: The interior-point revolution in optimization: history, recent developments, and lasting consequences. Bulletin of the American Mathematical Society, 42, (2005), pp. 39-56. open in new tab
  23. Xie Z., Rao Z., Ta N. et al.: Investigations on transitions of lubrication states for water lubricated bearing. Part I: determination of friction coefficients and film thickness ratios. 68(3), (2016) , pp. 404-415. DOI: 10.1108/ILT-10-2015-0146 open in new tab
  24. Xie Z., Rao Z., Ta N. et al.: Investigations on transitions of lubrication states for water lubricated bearing. Part II: further insight into the film thickness ratio lambda. Industrial Lubrication and Tribology, 68(3), (2016), pp. 416-429. DOI: 10.1108/ILT-10-2015-0147 open in new tab
  25. Xing H., Wu Q., Wu Z. et al.: Elastohydrodynamic lubrication analysis of marine sterntube bearing based on multi-body dynamics. In 2012 International Conference on Future Energy, Environment, and Materials, 2012, pp. 1046-1051. DOI:10.1016/j.egypro.2012.01.167. CONTACT WITH THE AUTHORS Aleksandr Ursolov e-mail: aleksandr.ursolov@nuos.edu.ua open in new tab
Verified by:
Gdańsk University of Technology

seen 95 times

Recommended for you

Meta Tags