Assessment of the Environmental Impact of a Car Tire throughout Its Lifecycle Using the LCA Method - Publication - Bridge of Knowledge

Search

Assessment of the Environmental Impact of a Car Tire throughout Its Lifecycle Using the LCA Method

Abstract

There are numerous threats to the natural environment that pose a significant risk both to the environment and to human health, including car tires. Thus, there is a need to determine the impact of the life cycle of car tires on the environment, starting with the processes of raw materials acquisition, production, and ending with end-of-life management. Therefore, the authors of this study chose to do research on passenger car tires (size: P205/55/R16). As part of the research, the life cycle assessment (LCA) of traditional car tires was performed with the use of the Eco-indicator 99, cumulative energy demand (CED), and Intergovernmental Panel on Climate Change (IPCC) methods. The level of negative effects was determined for the life cycle of a tire and its particular stages: Production, use, and end of life. The negative impact on the atmosphere, soil, and water, as well as on human health, the environment, and natural resources was also investigated. The results show that the most energy-absorbing stage of a car tire life cycle is the use stage. It was found that the most harmful impact involves the depletion of natural resources and emissions into the atmosphere. Recycling car tires reduces their negative environmental impact during all their life cycle stages.

Citations

  • 4 7

    CrossRef

  • 0

    Web of Science

  • 4 7

    Scopus

Authors (8)

Cite as

Full text

download paper
downloaded 93 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Materials no. 12, pages 1 - 25,
ISSN: 1996-1944
Language:
English
Publication year:
2019
Bibliographic description:
Piotrowska K., Kruszelnicka W., Bałdowska-Witos P., Kasner R., Rudnicki J., Tomporowski A., Flizikowski J., Opielak M.: Assessment of the Environmental Impact of a Car Tire throughout Its Lifecycle Using the LCA Method// Materials -Vol. 12,iss. 24 (2019), s.1-25
DOI:
Digital Object Identifier (open in new tab) 10.3390/ma12244177
Bibliography: test
  1. Slowik, T.; Szyszlak-Barglowicz, J.; Zajac, G.; Piekarski, W. Limiting the Environmental Impact of Road Infrastructure through the Use of Roadside Vegetation. Pol. J. Environ. Stud. 2015, 24, 1875-1879. [CrossRef] open in new tab
  2. Kocira, S.; Krawczuk, A.; Mucha, A.; Marczuk, A.; Parafiniuk, S. The 5S technique as a part of quality management in a chemical enterprise. A case study. Przem. Chem. 2015, 94, 1209-1212. open in new tab
  3. Formela, K.; Hejna, A.; Zedler, L.; Przybysz, M.; Ryl, J.; Saeb, M.R.; Piszczyk, L. Structural, thermal and physico-mechanical properties of polyurethane/brewers' spent grain composite foams modified with ground tire rubber. Ind. Crop. Prod. 2017, 108, 844-852. [CrossRef] open in new tab
  4. Klos, Z.; Lewicki, R.; Koper, K. Application of Environmental Characteristics of Materials in Sustainable Development;
  5. Horvath, I., Mandorli, F., Rusak, Z., Eds.; Delft Univ Technology, Faculty of Industrial Design Engineering: Delft, The Netherlands, 2010; ISBN 978-90-5155-060-3.
  6. Klos, Z. Ecobalancial assessment of chosen packaging processes in food industry. Int. J. Life Cycle Assess. 2002, 7, 309. [CrossRef] open in new tab
  7. Mannheim, V.; Siménfalvi, Z. Determining a Priority Order between Thermic Utilization Processes for Organic Industrial Waste with LCA; WIT Press: New Forest, UK, 2012; pp. 153-166. open in new tab
  8. Tomporowski, A.; Piasecka, I.; Flizikowski, J.; Kasner, R.; Kruszelnicka, W.; Mroziński, A.; Bieliński, K. Comparison Analysis of Blade Life Cycles of Land-Based and Offshore Wind Power Plants. Pol. Marit. Res. 2018, 25, 225-233. [CrossRef] open in new tab
  9. Labuschagne, C.; Brent, A.C. Sustainable Project Life Cycle Management: The need to integrate life cycles in the manufacturing sector. Int. J. Proj. Manag. 2005, 23, 159-168. [CrossRef] open in new tab
  10. Jachimowski, R.; Szczepanski, E.; Klodawski, M.; Markowska, K.; Dabrowski, J. Selection of a Container Storage Strategy at the Rail-road Intermodal Terminal as a Function of Minimization of the Energy Expenditure of Transshipment Devices and CO 2 Emissions. Rocz. Ochr. Sr. 2018, 20, 965-988.
  11. Rudnicki, J.; Zadrag, R. Technical State Assessment of Charge Exchange System of Self-Ignition Engine, Based on the Exhaust Gas Composition Testing. Pol. Marit. Res. 2017, 24, 203-212. [CrossRef] open in new tab
  12. Curry, R.; Powell, J.; Gribble, N.; Waite, S. A streamlined life-cycle assessment and decision tool for used tyres recycling. Proc. Inst. Civ. Eng. Waste Resour. Manag. 2011, 164, 227-237. [CrossRef] open in new tab
  13. Constantinescu, C. Ecological Dimension of Tire Management. Environ. Impact Tire Use 2012, 2, 187-195.
  14. Merkisz, J.; Rymaniak, L. The Assessment of Vehicle Exhaust Emissions Referred to Co2 Based on the Investigations of City Buses Under Actual Conditions of Operation. Eksploat. Niezawodn. 2017, 19, 522-529. [CrossRef] open in new tab
  15. Lijewski, P.; Merkisz, J.; Fuc, P. Research of Exhaust Emissions from a Harvester Diesel Engine with the Use of Portable Emission Measurement System. Croat. J. Eng. 2013, 34, 113-122.
  16. Andrzejewski, M.; Gallas, D.; Daszkiewicz, P.; Merkisz-Guranowska, A.; Stawecka, H. The latest technical solutions in rail vehicles drives. In Vii International Congress on Combustion Engines; Pielecha, J., Ed.; EDP Sciences: Les Ulis, France, 2017; Volume 118, p. UNSP 00015. open in new tab
  17. Godlewska, J. Recovery and Recycling of Waste Tires in Poland. Procedia Eng. 2017, 182, 229-234. [CrossRef] open in new tab
  18. Alwaeli, M. End-of-life vehicles recovery and recycling and the route to comply with eu directive targets. Environ. Prot. Eng. 2016, 42, 191-202. open in new tab
  19. Ogilvie, S.; Collins, M.; Aumônier, S. Life Cycle Assessment of the Management Options for Waste Tyres; Environment Agency: Bristol, UK, 2004; ISBN 978-1-84432-289-3.
  20. Mangmeechai, A. Moving towards sustainable end-of-life tyre management from the cost and environmental perspectives: A case study of Thailand. IJTPM 2017, 17, 77. [CrossRef] open in new tab
  21. Landi, D.; Marconi, M.; Meo, I.; Germani, M. Reuse scenarios of tires textile fibers: An environmental evaluation. Procedia Manuf. 2018, 21, 329-336. [CrossRef] open in new tab
  22. Piasecka, I.; Tomporowski, A.; Flizikowski, J.; Kruszelnicka, W.; Kasner, R.; Mroziński, A. Life Cycle Analysis of Ecological Impacts of an Offshore and a Land-Based Wind Power Plant. Appl. Sci. 2019, 9, 231. [CrossRef] open in new tab
  23. Marconi, M.; Landi, D.; Meo, I.; Germani, M. Reuse of Tires Textile Fibers in Plastic Compounds: Is this Scenario Environmentally Sustainable? Procedia Cirp 2018, 69, 944-949. [CrossRef] open in new tab
  24. Tomporowski, A.; Flizikowski, J.; Wełnowski, J.; Najzarek, Z.; Topoliński, T.; Kruszelnicka, W.; Piasecka, I.; Smigiel, S. Regeneration of rubber waste using an intelligent grinding system. Przemysł Chem. 2018, 97, 1659-1665.
  25. Ortiz-Rodriguez, O.O.; Ocampo-Duque, W.; Duque-Salazar, L.I. Environmental Impact of End-of-Life Tires: Life Cycle Assessment Comparison of Three Scenarios from a Case Study in Valle Del Cauca, Colombia. Energies 2017, 10, 2117. [CrossRef] open in new tab
  26. Korinek, R.; Koci, V. Evaluation of the Life Cycle of the Standard Car Tyre by LCA Method; open in new tab
  27. Adamec, V., Jandova, V., Eds.; Tribun Eu S R O: Brno, Czech, 2010; ISBN 978-80-7399-141-8.
  28. Mannheim, V. Examination of Thermic Treatment and Biogas Processes by Lca. Ann. Fac. Eng. Hunedoara Int. J. Eng. 2014, 12, 225-234. open in new tab
  29. Piasecka, I.; Tomporowski, A.; Piotrowska, K. Environmental analysis of post-use management of car tires. Przem. Chem. 2018, 97, 1649-1653.
  30. Eranki, P.L.; Landis, A.E. Pathway to domestic natural rubber production: A cradle-to-grave life cycle assessment of the first guayule automobile tire manufactured in the United States. Int. J. Life Cycle Assess. 2019, 24, 1348-1359. [CrossRef] open in new tab
  31. Rasutis, D. Comparative Life Cycle Assessment of Conventional and Guayule Automobile Tires. Master's Thesis, Arizona State University, Tempe, AZ, USA, 2014.
  32. Formela, K.; Hejna, A.; Piszczyk, A.; Saeb, M.R.; Colom, X. Processing and structure-property relationships of natural rubber/wheat bran biocomposites. Cellulose 2016, 23, 3157-3175. [CrossRef] open in new tab
  33. Bras, B.; Cobert, A. Life-Cycle Environmental Impact of Michelin Tweel ® Tire for Passenger Vehicles. Sae Int. J. Passeng. Cars Mech. Syst. 2011, 4, 32-43. [CrossRef] open in new tab
  34. Silke, K.; Eckhard, K.; Diethelm, R.; Rainer, S. Life Cycle Assessment of Car Tire; Continental AG: Hanover, Niemcy, 1999; p. 44.
  35. Best Foot Forward Ltd. Carbon Footprints of Tyre Production-New Versus Remanufactured; Centre for Remanufacturing and Reuse: Aylesbury, UK, 2008. open in new tab
  36. Tires Go Green-A Life Cycle Assessment. Available online: https://www.ultrasil.de/product/aerosil/ downloads/tires-go-gree-a-life-cycle-assesment-en.pdf (accessed on 23 September 2019). open in new tab
  37. Sustainable Mobility. In Hankook Tire CSR Report. Available online: https://www.hankooktire.com/kr/files/ sustainability/csr_reports/CSR_Report_201617_English.pdf (accessed on 23 September 2019). open in new tab
  38. Shanbag, A.; Manjare, S. Life Cycle Assessment of Tyre Manufacturing Process. J. Sustain. Dev. Energy Water Environ. Syst. 2020, 8, 22-24. [CrossRef] open in new tab
  39. Neri, E.; Berti, B.; Passarini, F.; Vassura, I.; Giorgini, L.; Zattini, G.; Tosi, C.; Cavazzoni, M. Application of Lca Methodology in the Assessment of a Pyrolysis Process for Tyres Recycling. Environ. Eng. Manag. J. 2018, 17, 2437-2445.
  40. Landi, D.; Gigli, S.; Germani, M.; Marconi, M. Investigating the feasibility of a reuse scenario for textile fibres recovered from end-of-life tyres. Waste Manag. 2018, 75, 187-204. [CrossRef] open in new tab
  41. Adamcova, D.; Vaverkova, M.; Kotovicova, J. Assessing of Various Methods of Cast-Off Tyre Disposal. Environ. Prot. Eng. 2014, 40, 115-130. open in new tab
  42. Feraldi, R.; Cashman, S.; Huff, M.; Raahauge, L. Comparative LCA of treatment options for US scrap tires: Material recycling and tire-derived fuel combustion. Int. J. Life Cycle Assess. 2013, 18, 613-625. [CrossRef] open in new tab
  43. Clauzade, C.; Osset, P.; Hugrel, C.; Chappert, A.; Durande, M.; Palluau, M. Life cycle assessment of nine recovery methods for end-of-life tyres. Int. J. Life Cycle Assess. 2010, 15, 883-892. [CrossRef] open in new tab
  44. Finnveden, G.; Hauschild, M.Z.; Ekvall, T.; Guinée, J.; Heijungs, R.; Hellweg, S.; Koehler, A.; Pennington, D.; Suh, S. Recent developments in Life Cycle Assessment. J. Environ. Manag. 2009, 91, 1-21. [CrossRef] [PubMed] open in new tab
  45. Kirchain, R.E., Jr.; Gregory, J.R.; Olivetti, E.A. Environmental life-cycle assessment. Nat. Mater. 2017, 16, 693-697. [CrossRef] [PubMed] open in new tab
  46. ISO 14044:2006-Environmental Management-Life Cycle Assessment-Requirements and Guidelines; ISO: Geneva, Switzerland, 2006. open in new tab
  47. Dreyer, L.C.; Niemann, A.L.; Hauschild, M.Z. Comparison of Three Different LCIA Methods: EDIP97, CML2001 and Eco-indicator 99. Int. J. Life Cycle Assess. 2003, 8, 191-200. [CrossRef] open in new tab
  48. Alemam, A.; Cheng, X.; Li, S. Treating design uncertainty in the application of Eco-indicator 99 with Monte Carlo simulation and fuzzy intervals. Int. J. Sustain. Eng. 2018, 11, 110-121. [CrossRef] open in new tab
  49. Bałdowska-Witos, P.; Kruszelnicka, W.; Kasner, R.; Tomporowski, A.; Flizikowski, J.; Mrozinski, A. Impact of the plastic bottle production on the natural environment. Part 2. Analysis of data uncertainty in the assessment of the life cycle of plastic beverage bottles using the Monte Carlo technique. Przemysł Chem. 2019, 98, 1668-1672. open in new tab
  50. O'Brien, D.; Shalloo, L.; Patton, J.; Buckley, F.; Grainger, C.; Wallace, M. Evaluation of the effect of accounting method, IPCC v. LCA, on grass-based and confinement dairy systems' greenhouse gas emissions. Animal 2012, 6, 1512-1527. open in new tab
  51. Roscoe, P. Method, Measurement, and Management in IPCC Climate Modeling. Hum. Ecol. 2016, 44, 655-664. [CrossRef] open in new tab
  52. Hooftman, N.; Oliveira, L.; Maarten, M.; Coosemans, T.; Van Mierlo, J. Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting. Energies 2016, 9, 84. [CrossRef] open in new tab
  53. JCGM. International Vocabulary of Metrology-Basic and General Concepts and Associated Terms; BIPM: Sèvres, France, 2012. open in new tab
  54. Lewandowska, A.Środowiskowa Ocena CykluŻycia Produktu na Przykładzie Wybranych Typów Pomp Przemysłowych; Wydawnictwo Akademii Ekonomicznej w Poznaniu: Poznań, Poland, 2006.
  55. Bauer, C. Ecoinvent Data v2.0 Energy Supply; open in new tab
  56. Swiss Centre for Life Cycle Inventories: Lausanne, The Netherlands, 2008; p. 18. open in new tab
  57. Sun, X.; Liu, J.; Hong, J.; Lu, B. Life cycle assessment of Chinese radial passenger vehicle tire. Int. J. Life Cycle Assess. 2016, 21, 1749-1758. [CrossRef] open in new tab
  58. Serkowski, S.; Korol, J. Ocenaśrodowiskowa technologii wytwarzania proppantu na podstawie analizy LCA-Analiza porównawcza. Szkło I Ceram. 2014, 65, 12-15.
  59. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Verified by:
Gdańsk University of Technology

seen 275 times

Recommended for you

Meta Tags