Atomic-Scale Finite-Element Modeling of Elastic Mechanical Anisotropy in Finite-Sized Strained Phosphorene Nanoribbons - Publication - Bridge of Knowledge

Search

Atomic-Scale Finite-Element Modeling of Elastic Mechanical Anisotropy in Finite-Sized Strained Phosphorene Nanoribbons

Abstract

Nanoribbons are crucial nanostructures due to their superior mechanical and electrical properties. This paper is devoted to hybrid studies of the elastic mechanical anisotropy of phosphorene nanoribbons whose edges connect the terminals of devices such as bridges. Fundamental mechanical properties, including Young’s modulus, Poisson’s ratio, and density, were estimated from first-principles calculations for 1-layer, 3-layer, and 6-layer nanoribbons with widths of 10 Å. The data achieved from the ab initio simulations supplied the finite-element model (FEM) of the nanoribbons. The directional coefficients of strain pressure curves were estimated as Young’s effective modulus since the structure is one-dimensional (1D). The modulus values were equal to 85.8, 111.8, and 134 GPa for 6, 3 and 1 layers, respectively. Moreover, the variation in Poisson’s coefficient for the armchair direction was significantly smaller than for the zigzag direction. Monotonic changes in this twist were observed for structures with 3 and 6 layers within the plane along the zigzag axis. The phosphorene nanoribbons subjected to periodic excitation behaved similarly to those subjected to static loading, while their whippiness was inversely proportional to the length. Next, the deflection under static force, resonance frequencies, and response to a variable driving force were calculated.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Journal of Physical Chemistry C no. 126, pages 14219 - 14228,
ISSN: 1932-7447
Language:
English
Publication year:
2022
Bibliographic description:
Pyrchla K., Bogdanowicz R.: Atomic-Scale Finite-Element Modeling of Elastic Mechanical Anisotropy in Finite-Sized Strained Phosphorene Nanoribbons// Journal of Physical Chemistry C -Vol. 126,iss. 33 (2022), s.14219-14228
DOI:
Digital Object Identifier (open in new tab) 10.1021/acs.jpcc.2c04500
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 76 times

Recommended for you

Meta Tags