Bio-Based Polyurethane Composites and Hybrid Composites Containing a New Type of Bio-Polyol and Addition of Natural and Synthetic Fibers - Publication - Bridge of Knowledge

Search

Bio-Based Polyurethane Composites and Hybrid Composites Containing a New Type of Bio-Polyol and Addition of Natural and Synthetic Fibers

Abstract

This article describes how new bio-based polyol during the liquefaction process can be obtained. Selected polyol was tested in the production of polyurethane resins. Moreover, this research describes the process of manufacturing polyurethane materials and the impact of two different types of fibers—synthetic and natural (glass and sisal fibers)—on the properties of composites. The best properties were achieved at a reaction temperature of 150 °C and a time of 6 h. The hydroxyl number of bio-based polyol was 475 mg KOH/g. Composites were obtained by hot pressing for 15 minutes at 100 °C and under a pressure of 10 MPa. Conducted researches show the improvement of flexural strength, impact strength, hardness, an increase of storage modulus of obtained materials, and an increase of glass transition temperature of hard segments with an increasing amount of fibers. SEM analysis determined better adhesion of sisal fiber to the matrix and presence of cracks, holes, and voids inside the structure of composites.

Citations

  • 2 2

    CrossRef

  • 0

    Web of Science

  • 1 6

    Scopus

Cite as

Full text

download paper
downloaded 59 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Materials no. 13, pages 1 - 21,
ISSN: 1996-1944
Language:
English
Publication year:
2020
Bibliographic description:
Olszewski A., Kosmela P., Mielewczyk-Gryń A., Piszczyk Ł.: Bio-Based Polyurethane Composites and Hybrid Composites Containing a New Type of Bio-Polyol and Addition of Natural and Synthetic Fibers// Materials -Vol. 13,iss. 9 (2020), s.1-21
DOI:
Digital Object Identifier (open in new tab) 10.3390/ma13092028
Bibliography: test
  1. Kosmela, P.; Kazimierski, P.; Formela, K.; Haponiuk, J.; Piszczyk, Ł. Liquefaction of macroalgae Enteromorpha biomass for the preparation of biopolyols by using crude glycerol. J. Ind. Eng. Chem. 2017, 56, 399-406. doi:10.1016/j.jiec.2017.07.037. open in new tab
  2. Ma, R.; Li, W.; Huang, M.; Feng, M.; Liu, X. The reinforcing effects of dendritic short carbon fibers for rigid polyurethane composites. Compos. Sci. Technol. 2019, 170, 128-134. doi:10.1016/j.compscitech.2018.11.047. open in new tab
  3. Bledzki, A.K.; Gassan, J. Composites reinforced with cellulose based fibers. Prog. Polym. Sci. 1999, 24, 221- 274. doi:10.1016/S0079-6700(98)00018-5. open in new tab
  4. Rahman, R.; Putra, S.Z. Tensile properties of natural and synthetic fiber-reinforced polymer composites. In Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites; open in new tab
  5. Woodhead Publishing: Cambridge, UK, 2019. doi:10.1016/b978-0-08-102292-4.00005-9. open in new tab
  6. Li, S.; Vatanparast, R.; Lemmetyinen, H. Cross-linking kinetics and swelling behavior of aliphatic polyurethane. Polymer 2000, 41, 5571-5576. doi:10.1016/S0032-3861(99)00785-5. open in new tab
  7. Atiqah, A.; Jawaid, M.; Sapuan, S.M.; Ishak, M.R.; Alothman, O.Y. Thermal properties of sugar palm/glass fiber reinforced thermoplastic polyurethane hybrid composites. Compos. Struct. 2018, 202, 954-958. doi:10.1016/j.compstruct.2018.05.009. open in new tab
  8. Sheehan, J.E. Oxidation protection for carbon fiber composites. Carbon 1989, 27, 709-715. doi:10.1016/0008- 6223(89)90204-2. open in new tab
  9. Zhao, Q.; Tan, S.; Xie, M.; Liu, Y.; Yi, J. A study on the CNTs-Ag composites prepared based on spark plasma sintering and improved electroless plating assisted by ultrasonic spray atomization. J. Alloy. Compd. 2018, 737, 31-38. doi:10.1016/j.jallcom.2017.12.066. open in new tab
  10. Okabe, T.; Takeda, N. Size effect on tensile strength of unidirectional CFRP composites experiment and simulation. Compos. Sci. Technol. 2002, 62, 2053-2064. doi:10.1016/S0266-3538(02)00146-X. open in new tab
  11. Indra Reddy, M.; Prasad Varma, U.R.; Ajit Kumar, I.; Manikanth, V.; Kumar Raju, P.V. Comparative Evaluation on Mechanical Properties of Jute, Pineapple leaf fiber and Glass fiber Reinforced Composites with Polyester and Epoxy Resin Matrices. Mater. Today Proc. 2018, 5, 5649-5654. doi:10.1016/j.matpr.2017.12.158. open in new tab
  12. Meng, L.; Li, W.; Ma, R.; Huang, M.; Wang, J.; Luo, Y.; Wang, J.; Xia, K. Long UHMWPE fibers reinforced rigid polyurethane composites: An investigation in mechanical properties. Eur. Polym. J. 2018, 105, 55-60. doi:10.1016/j.eurpolymj.2018.05.021. open in new tab
  13. Selke, S.E.; Wichman, I. Wood fiber/polyolefin composites. Compos. Part A Appl. Sci. Manuf. 2004, 35, 321- 326. doi:10.1016/j.compositesa.2003.09.010. open in new tab
  14. Thakur, V.K.; Thakur, M.K.; Gupta, R.K. Review: Raw Natural Fiber-Based Polymer Composites. Int. J. Polym. Anal. Charact. 2014, 19, 256-271. doi:10.1080/1023666X.2014.880016. open in new tab
  15. Šebenik, U.; Krajnc, M. Influence of the soft segment length and content on the synthesis and properties of isocyanate-terminated urethane prepolymers. Int. J. Adhes. Adhes. 2007, 27, 527-535. doi:10.1016/j.ijadhadh.2006.10.001. open in new tab
  16. Westman, M.P.; Fifield, L.S.; Simmons, K.L.; Laddha, S.; Kafentzis, T.A. Natural Fiber Composites: A Review; open in new tab
  17. Pacific Northwest National Lab. (PNNL): Richland, WA, USA, 2010. doi:10.2172/989448. open in new tab
  18. Senthilkumar, K.; Saba, N.; Rajini, N.; Chandrasekar, M.; Jawaid, M.; Siengchin, S.; Alotman, O.Y. Mechanical properties evaluation of sisal fibre reinforced polymer composites: A review. Constr. Build. Mater. 2018, 174, 713-729. doi:10.1016/j.conbuildmat.2018.04.143. open in new tab
  19. Staiger, M.; Tucker, N. Natural-fibre composites in structural applications. Prop. Perform. Nat. -Fibre Compos. 269-300. doi:10.1533/9781845694593.2.269. open in new tab
  20. Franck, R.R. Bast and Other Plant Fibres; CRC Press: 2005; pp. 228-273. doi:10.1533/9781845690618.228. open in new tab
  21. Datta, J.; Parcheta, P.; Surówka, J. Softwood-lignin/natural rubber composites containing novel plasticizing agent: Preparation and characterization. Ind. Crop. Prod. 2017, 95, 675-685. doi:10.1016/j.indcrop.2016.11.036. open in new tab
  22. Datta, J.; Kasprzyk, P.; Błażek, K.; Włoch, M. Synthesis, structure and properties of poly(ester-urethane)s obtained using bio-based and petrochemical 1,3-propanediol and 1,4-butanediol. J. Therm. Anal. Calorim. 2017, 130, 261-276. doi:10.1007/s10973-017-6558-z. open in new tab
  23. Janiszewska, D.; Frąckowiak, I.; Mytko, K. Exploitation of liquefied wood waste for binding recycled wood particleboards. Holzforschung 2016, 70, 1135-1138. doi:10.1515/hf-2016-0043. open in new tab
  24. Hejna, A.; Kosmela, P.; Klein, M.; Gosz, K.; Formela, K.; Haponiuk, J.Ó.; Piszczyk, Ł. Rheological properties, oxidative and thermal stability, and potential application of biopolyols prepared via two-step process from crude glycerol. Polym. Degrad. Stab. 2018. doi:10.1016/j. polymdegradstab.2018.03.022. open in new tab
  25. Kosmela, P.; Hejna, A.; Formela, K.; Haponiuk, J.T.; Piszczyk, Ł. Biopolyols obtained via crude glycerol- based liquefaction of cellulose: Their structural, rheological and thermal characterization. Cellulose 2016, 23, 2929-2942. doi:10.1007/s10570-016-1034-7. open in new tab
  26. Venkatesh, D.; Jaisankar, V. Synthesis and characterization of bio-polyurethanes prepared using certain bio-based polyols. Mater. Today Proc. 2019, 14, 482-491. doi:10.1016/j.matpr.2019.04.171. open in new tab
  27. Jiang, W.; Kumar, A.; Adamopoulos, S. Liquefaction of lignocellulosic materials and its applications in wood adhesives-A review. Ind. Crop. Prod. 2018, 124, 325-342. doi:10.1016/j.indcrop.2018.07.053. open in new tab
  28. Akhtar, J.; Amin, N.A.S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew. Sustain. Energy Rev. 2011, 15, 1615-1624. doi:10.1016/j.rser.2010.11.054. open in new tab
  29. Huang, H.; Yuan, X. Recent progress in the direct liquefaction of typical biomass. Prog. Energy Combust. Sci. 2015, 49, 59-80. doi:10.1016/j.pecs.2015.01.003. open in new tab
  30. Dimitriadis, A.; Bezergianni, S. Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: A state of the art review. Renew. Sustain. Energy Rev. 2017, 68, 113-125. doi:10.1016/j.rser.2016.09.120. open in new tab
  31. Głowińska, E.; Datta, J. A mathematical model of rheological behavior of novel bio-based isocyanate- terminated polyurethane prepolymers. Ind. Crop. Prod. 2014, 60, 123-129. doi:10.1016/j.indcrop.2014.06.016. open in new tab
  32. Hu, S.; Li, Y. Two-step sequential liquefaction of lignocellulosic biomass by crude glycerol for the production of polyols and polyurethane foams. Bioresour. Technol. 2014, 161, 410-415. doi:10.1016/j.biortech.2014.03.072. open in new tab
  33. Kosmela, P.; Gosz, K.; Kazimierski, P.; Hejna, A.; Haponiuk, J.T.; Piszczyk, Ł. Chemical structures, rheological and physical properties of biopolyols prepared via solvothermal liquefaction of Enteromorpha and Zostera marina biomass. Cellulose 2019. doi:10.1007/s10570-019-02540-8. open in new tab
  34. Budarin, V.L.; Clark, J.H.; Lanigan, B.A.; Shuttleworth, P.; Macquarrie, D.J. Microwave assisted decomposition of cellulose: A new thermochemical route for biomass exploitation. Bioresour. Technol. 2010, 101, 3776-3779. doi:10.1016/j.biortech.2009.12.110. open in new tab
  35. Ertaş, M.; Fidan, M.S.; Alma, M.H. Preparation and characterization of biodegradable rigid polyurethane foams from the liquefied eucalyptus and pine woods. Wood Res. 2014, 59, 97-108.
  36. Bandekar, J.; Klima, S. FT-IR spectroscopic studies of polyurethanes Part I. Bonding between urethane, COC groups and the NH groups. J. Mol. Struct. 1991, 263, 45-57. doi:10.1016/0022-2860(91)80054-8. open in new tab
  37. Dun, M.; Hao, J.; Wang, W.; Wang, G.; Cheng, H. Sisal fiber reinforced high density polyethylene pre-preg for potential application in filament winding. Compos. Part B 2018. doi: doi:10.1016/j.compositesb.2018.09.090. open in new tab
  38. Xie, Q.; Li, F.; Li, J.; Wang, L.; Li, Y.; Zhang, C.; Chen, S. A new biodegradable sisal fiber-starch packing composite with nest structure. Carbohydr. Polym. 2018, 189, 56-64. doi:10.1016/j.carbpol.2018.01.063. open in new tab
  39. Mohan, T.P.; Kanny, K. Chemical treatment of sisal fiber using alkali and clay method. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1989-1998. doi:10.1016/j.compositesa.2012.07.012. open in new tab
  40. Ciolacu, D.; Ciolacu, F.; Popa, V.I. Amorphous cellulose: Structure and characterization. Cellul. Chem. Technol. 2011, 45, 13-21. open in new tab
  41. Wirpsza, Z. Poliuretany: Chemia, Technologia, Zastosowanie; Wydawnictwa Naukowo-Techniczne: Warszawa, Poland, 1991; pp. 340-349.
  42. Amico, S.C.; Angrizani, C.C.; Drummond, M.L. Influence of the Stacking Sequence on the Mechanical Properties of Glass/Sisal Hybrid Composites. J. Reinf. Plast. Compos. 2008, 29, 179-189. doi:10.1177/0731684408096430. open in new tab
  43. Paiva Júnior, C.; de Carvalho, L.; Fonseca, V.; Monteiro, S.; d' Almeida, J.R. Analysis of the tensile strength of polyester/hybrid ramie-cotton fabric composites. Polym. Test. 2004, 23, 131-135. doi:10.1016/s0142- 9418(03)00071-0. open in new tab
  44. Lv, M.; Wang, L.; Liu, J.; Kong, F.; Ling, A.; Wang, T.; Wang, Q. Surface energy, hardness, and tribological properties of carbon-fiber/polytetrafluoroethylene composites modified by proton irradiation. Tribol. Int. 2019, 132, 237-243. doi:10.1016/j.triboint.2018.12.028. open in new tab
  45. Gupta, N.V.; Rao, K.S. An Experimental Study on Sisal/Hemp Fiber Reinforced Hybrid Composites. Mater. Today Proc. 2018, 5, 7383-7387. doi:10.1016/j.matpr.2017.11.408. open in new tab
  46. Jawaid, M.; Abdul Khalil HP, S.; Alattas, O.S. Woven hybrid biocomposites: Dynamic mechanical and thermal properties. Compos. Part A: Appl. Sci. Manuf. 2012, 43, 288-293. doi:10.1016/j.compositesa.2011.11.001. open in new tab
  47. Pothan, L.A.; George, C.N.; John, M.J.; Thomas, S. Dynamic Mechanical and Dielectric Behavior of Banana- Glass Hybrid Fiber Reinforced Polyester Composites. J. Reinf. Plast. Compos. 2009, 29, 1131-1145. doi:10.1177/0731684409103075. open in new tab
Sources of funding:
  • Projekt; Publikacje 2020 Wydział Chemiczny
Verified by:
Gdańsk University of Technology

seen 183 times

Recommended for you

Meta Tags