Boron doped Nanocrystalline Diamond-Carbon Nanospike Hybrid Electron Emission Source - Publication - Bridge of Knowledge

Search

Boron doped Nanocrystalline Diamond-Carbon Nanospike Hybrid Electron Emission Source

Abstract

Electron emission signifies an important mechanism facilitating the enlargement of devices that have modernized large parts of science and technology. Today, the search for innovative electron emission devices for imaging, sensing, electronics, and high-energy physics continues. Integrating two materials with dissimilar electronic properties into a hybrid material is an extremely sought-after synergistic approach envisioning a superior field electron emission (FEE) material. An innovation is described regarding the fabrication of a nanostructured carbon hybrid resulting from the one-step growth of boron doped nanocrystalline diamond (BNCD) and carbon nanospikes (CNSs) by a microwave plasma enhanced chemical vapor deposition technique. Spectroscopic and microscopic tools are used to investigate the morphological, bonding, and microstructural characteristics related to the growth mechanism of these hybrids. Utilizing the benefits of both the sharp edges of the CNSs and the high stability of BNCD, a promising FEE performance with a lower turn-on field of 1.3 V um-1, a higher field enhancement factor of 6780, and a stable FEE current stability lasting for 780 min is obtained. The microplasma devices utilizing these hybrids as a cathode illustrate a superior plasma illumination behavior. Such hybrid carbon nanostructures, with superb electron emission characteristics, can encourage the enlargement of several electron emission device technologies.

Citations

  • 1 4

    CrossRef

  • 0

    Web of Science

  • 1 3

    Scopus

Cite as

Full text

download paper
downloaded 61 times
Publication version
Accepted or Published Version
License
Copyright (2019 American Chemical Society)

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
ACS Applied Materials & Interfaces no. 11, pages 48612 - 48623,
ISSN: 1944-8244
Language:
English
Publication year:
2019
Bibliographic description:
Kamatchi S., Ficek M., Kalpataru P., Yeh C., Mirosław S., Ryl J., Leou K., Young Park J., Lin I., Bogdanowicz R., Haenen K.: Boron doped Nanocrystalline Diamond-Carbon Nanospike Hybrid Electron Emission Source// ACS Applied Materials & Interfaces -Vol. 11,iss. 51 (2019), s.48612-48623
DOI:
Digital Object Identifier (open in new tab) 10.1021/acsami.9b17942
Bibliography: test
  1. Zhang, Q.; Wang, X.; Meng, P.; Yue, H.; Zheng, R.; Wu, X.; Cheng, G. High Current Density and Low Emission Field of Carbon Nanotube Array Microbundle. Appl. Phys. Lett. 2018, 112, 013101. open in new tab
  2. Deshmukh, S.; Sankaran, K. J.; Srinivasu, K.; Korneychuk, S.; Banerjee, D.; Barman, A.; open in new tab
  3. Bhattacharya, G.; Phase, D. M.; Gupta, M.; Verbeeck, J.; Leou, K. C.; Lin, I. N.; Haenen, K.; Roy, S. S. Local Probing of the Enhanced Field Electron Emission of Vertically Aligned Nitrogen-doped Diamond Nanorods and Their Plasma Illumination Properties. Diamond Relat.
  4. Mater. 2018, 83, 118125. open in new tab
  5. Zhou, S.; Chen, K.; Cole, M. T.; Li, Z.; Chen, J.; Li, C.; Dai, Q. Ultrafast Field Emission Electron Sources Based on Nanomaterials. Adv. Mater. 2019, 1805845. open in new tab
  6. Giubileo, F.; Bartolomeo, A. D.; Iemmo, L.; Luongo, G.; Urban, F. Field Emission from Carbon Nanostructures. Appl. Sci. 2018, 8, 526. open in new tab
  7. Sankaran, K. J.; Srinivasu, K.; Leou, K. C.; Tai, N. H.; Lin, I. N. High Stability Electron open in new tab
  8. Field Emitters Made of Nanocrystalline Diamond Coated Carbon Nanotubes. Appl. Phys. Lett. 2013, 103, 251601. open in new tab
  9. Chang, T.; Lu, F.; Kunuku, S.; Leou, K.; Tai, N.; Lin, I. Enhanced Electron Field Emission Properties from Hybrid Nanostructures of Graphene/Si Tip Array. RSC Adv. 2015, 5, 2922933. open in new tab
  10. Varshney, D.; Rao, C. V.; Mendoza, F.; Perez, K.; Guinel, M. J.-F.; Ishikawa, Y.; open in new tab
  11. Weiner, B. R.; Morell, G. Electron Emission of Graphene-Diamond Hybrid Films Using Paraffin Wax as Diamond Seeding Source. World J. Nano Sci. Engg. 2012, 2, 126133.
  12. Chang, I. L.; Tsai, P. H.; Tsai, H. Y. Field Emission Characteristics of CNFB-CNT open in new tab
  13. Hybrid Material Grown by One-step MPCVD. Diamond Relat. Mater. 2016, 69, 229236. open in new tab
  14. Tsai, P. H.; Tsai, H. Y. Fabrication and Field Emission Characteristic of Microcrystalline Diamond/Carbon Nanotube Double Layered Pyramid Arrays. Thin Solid Films 2015, 584, 330335. open in new tab
  15. Chang, T. H.; Hsieh, P. Y.; Kunuku, S.; Lou, S. C.; Manoharan, D.; Leou, K. C.; Lin, I. open in new tab
  16. N. ; Tai, N. H. High Stability Electron Field Emitters Synthesized via The Combination of Carbon Nanotubes and N2-Plasma Grown Ultrananocrystalline Diamond Films. ACS Appl. open in new tab
  17. Mater. Interfaces 2015, 7, 2752627538.
  18. Yuge, R.; Miyawaki, J.; Ichihashi, T.; Kuroshima, S.; Yoshitake, T.; Ohkawa, T.; Aoki, Y.; Iijima, S.; Yudasaka, M. Highly Efficient Field Emission from Carbon Nanotube-Nanohorn Hybrids Prepared by Chemical Vapor Deposition. ACS Nano 2010, 12, 73377343. open in new tab
  19. Dai, W.; Chung, C. Y.; Alam, F. E.; Hung, T. T.; Sun, H.; Wei, Q.; Lin, C. T.; Chen, S. open in new tab
  20. K.; Chin, T. S. Superior Field Emission Performance of Graphene/Carbon Nanofilament Hybrids Synthesized by Electrochemical Self-exfoliation. Mater. Lett. 2017, 205, 223225. (21) Xiao, X.; Auciello, O.; Cui, H.; Lowndes, D. H.; Merkulov, V. L.; Carlisle, J. Synthesis and Field Emission Properties of Hybrid Structures of Ultrananocrystalline Diamond and Vertically Aligned Carbon Nanofibers. Diamond Relat. Mater. 2006, 15, 244247.
  21. Zou, Y.; May, P. W.; Vieira, S. M. C.; Fox, N. A. Field Emission from Diamond-Coated Multiwalled Carbon Nanotue "teepee" Structures. J. Appl. Phys. 2012, 112, 044903. (23) Zanin, H.; May, P. W.; Hamanaka, M. H. M. O.; Corat, E. J. Field Emission from Hybrid Diamond-like Carbon and Carbon Nanotube Composite Structures. ACS Appl. Mater. Interfaces 2013, 5, 1223812243.
  22. Uppireddi, K.; Weiner, B. R.; Morell, G. Field Emission Stability and Properties of Simultaneously Grown Microcrystalline Diamond and Carbon Nanostructure Films. J. Vac. Sci. Tech. B 2010, 28, 12021205. open in new tab
  23. Koh, A. T. T.; Chen, T.; Pan, L.; Sun, Z.; Chua, D. H. C. Effective Hybrid open in new tab
  24. Graphene/Carbon Nanotubes Field Emitters by Electrophoretic Deposition. J. Appl. Phys. 2013, 113, 174909. open in new tab
  25. Liu, J.; Zeng, B.; Wang, X.; Wang, W.; Shi, H. One-step Growth of Vertical Graphene Sheets on Carbon Nanotubes and Their Field Emission Properties. Appl. Phys. Lett. 2013, 103, 053105. open in new tab
  26. Nguyen, D. D.; Lai, Y. T.; Tai, N. H. Enhanced Field Emission Properties of a Reduced Graphene oxide/Carbon Nanotube Hybrid Film. Diamond Relat. Mater. 2014, 47, 1-6. open in new tab
  27. Sankaran, K. J.; Yeh, C. J.; Drijkoningen, S.; Pobedinskas, P.; Van Bael, M. K.; Leou, K. open in new tab
  28. C.; Lin, I. N.; Haenen, K. Enhancement of Plasma Illumination Characteristics of Few-layer
  29. Graphene Diamond Nanorods Hybrid. Nanotechnology 2017, 28, 065701. open in new tab
  30. Piazza, F.; Golanski, A.; Schulze, S.; Relihan, G. Transpolyacetylene Chains in open in new tab
  31. Hydrogenated Amorphous Carbon Films Free of Nanocrystaline Diamond. Appl. Phys. Lett. 2003, 82, 358360. open in new tab
  32. Nemanich, R. J.; Solin, S. A. First-and Second-order Raman Scattering from Finite-size Crystals of Graphite. Phys. Rev. B 1979, 20, 392401. open in new tab
  33. Bokobza, L.; Zhang, J. Raman Spectroscopic Characterization of Multiwall Carbon Nanotubes and of Composites. Express Polym. Lett. 2012, 6, 601608. open in new tab
  34. Sobaszek, M.; Siuzdak, K.; Ryl. J.; Sawczak, M.; Gupta, S.; Carrizosa, S. B.; Ficek, M.; Dec, B.; Darowicki, K.; Bogdanowicz, R. Diamond Phase (sp 3 -C) Rich Boron-Doped Carbon Nanowalls (sp 2 -C): Physicochemical and Electrochemical Properties. J. Phys. Chem. open in new tab
  35. C. 2017, 121, 2082120833.
  36. Veetil, M. K. K.; Gamache, R. M.; Bernstein, N.; Goswami, R.; Qadri, S. B.; Fears, K.
  37. P.; Miller, J. B.; Glaser, E. R.; Keller, T. M. Substitution of Silicon Within the Rhombohedral Boron Carbide (B 4 C) Crystal Lattice Through High-Energy Ball Milling. J. Mater. Chem. C. 2015, 3, 1170511716.
  38. Wang, K.; Kang, X.; Kang, Q.; Zhong, Y.; Hu, C.; Wang, P. Improved Reversible Dehydrogenation of 2LIBH4-MgH2 Composite by the Controlled Formation of Transition Metal Boride. J. Mater. Chem. A. 2014, 2, 21462151. (35) Cermignani, W.; Paulson, T. E.; Onneby, C.; Pantano, C. G. Syntheis and Characterization of Boron-doped Carbons. Carbon 1995, 33, 367374.
  39. Siuzdak, K.; Ficek, M.; Sobaszek, M.; Ryl, J.; Gnyba, M.; Niedzialkowski, P.; Malinowska, N.; Karczewski, J.; Bogdanowicz, R. Boron-Enhanced Growth of Micron-Scale Carbon-Based Nanowalls: A Route Toward High Rates of Electrochemical Biosensing. ACS Appl. Mater. Interfaces 2017, 9, 1298212992. open in new tab
  40. Chaudhari, N. K.; Song, M. Y.; Yu, J. S. Heteroatom-doped Highly Porous Carbon from Human Urine. Sci. Rep. 2014, 4, 5221. open in new tab
  41. Yang, J.; Xu, M.; Wang, J.; Jin, S.; Tan, B. A Facile Approach to Prepare Multiple Heteroatom-Doped Carbon Materials from Imine-Linked Porous Organic Polymers. Sci. Rep. 2018, 8, 4200. open in new tab
  42. Sankaran, K. J.; Ficek, M.; Kunuku, S.; Panda, K.; Yeh, C. J.; Park, J. Y.; Sawczak, M.; open in new tab
  43. Michałowski, P. P.; Leou, K. C.; Bogdanowicz, R.; Lin, I. N.; Haenen, K. Self-organized Multi- layered Graphene-Boron Doped Diamond Hybrid Nanowalls for High-Performance Electron Emission Devices. Nanoscale 2018, 10, 13451355.
  44. Chubenko, O.; Baturin, S. S.; Baryshev, S. V. Scanning Probe Microscopy and Field Emission Schemes for Studying Electron Emission from Polycrystalline Diamond. Appl. Phys. Lett. 2016, 109, 113102. open in new tab
  45. Wisitsoraat, A.; Kang, W. P.; Davidson, J. L.; Li, Q.; Xu, J. F.; Kerns, D. V. Efficient Electron Emitter Utlizing Boron-doped Diamond Tips with sp 2 Content. Appl. Surf. Sci. 1999, 146, 280286. open in new tab
  46. Kwon, S. J.; Shin, Y. H.; Asalm, D. M.; Lee, J. D. Field Emission Properties of the
  47. Polycrystalline Diamond Film Prepared by Microwave-Assisted Plasma Chemical Vapor Deposition. J. Vac., Sci. Technol. B 1998, 16, 712715. open in new tab
  48. Lee, Y. C.; Lin, S. J.; Lin, I. N.; Cheng, H. F. Effect of Boron Doping on the Electron- Field-Emission Properties of Nanodiamond Films. J. Appl. Phys. 2005, 97, 054310. (44) Panda, K.; Jeong, J. H.; Park, J. Y.; Sankaran, K. J.; Sundaravel, B.; Lin, I. N. Nanoscale Investigation of Enhanced Electron Field Emission for Silver Ion Implanted/Post-annealed Ultrananocrystalline Diamond Films. Sci. Rep. 2017, 7, 16325.
  49. Schoenbach, K. H.; Becker, K. 20 years of Microplasma Research: A Status Report. Eur. open in new tab
  50. Phys. J. D 2016, 70, 29.
  51. Ostrikov, K. Control of Energy and Matter at Nanoscales: Challenges and Opportunities for Plasma Nanoscience in a Sustainability Age. J. Phys. D: Appl. Phys. 2011, 44, 174003. (48) Barekzi, N.; Laroussi, M. Effect of Low Temperature Plasmas on Cancer Cells. Plasma Process. Polym. 2013, 10, 10391050. open in new tab
  52. Saravanan, A.; Huang, B. R.; Manoharan, D.; Lin, I. N. High-Performance Electron Field Emitters and Microplasma Cathodes Based on Conductive Hybrid Granular Structured Diamond Materials. ACS Appl. Mater. Interfaces 2017, 9, 49164925. open in new tab
  53. Venkatraman, V.; Garg, A.; Peroulis, D. Direct Measurements and Numerical Simulations of Gas Charging in Microelectromechanical System Capacitive Switches. Appl. Phys. Lett. 2012, 100, 083503. open in new tab
  54. Kalita, G.; Wakita, K.; Umeno, M. Low Temperature Growth of Graphene Film by open in new tab
  55. Microwave Assisted Surface Wave Plasma CVD for Transparent Electrode Application. RSC Adv. 2012, 2, 28152820. open in new tab
  56. Kovarik, P.; Bourdon, E. B. D.; Prince, R. H. Electron-Energy-Loss Characterization of Laser-Deposited a-C, a-C:H, and Diamond Films. Phys. Rev. B:Condens. Matter 1993, 48, 12123. open in new tab
  57. Prawer, S.; Peng, J. L.; Orwa, J. O.; McCallum, J. C.; Jamieson, D. N.; Bursill, L. A. Size Dependence of Structural Stability in Nanocrystalline Diamond. Phys. Rev. B: Condens.Matter 2000, 62, R16360 open in new tab
  58. Kurian, J.; Sankaran, K. J.; Thomas, J. P.; Tai, N. H.; Chen, H. C.; Lin, I. N. The Role of Nanographitic Phase on Enhancing the Electron Field Emission Properties of Hybrid Granular Structured Diamond Films: The Electron Energy Loss Spectroscopic Studies. J. Phys. D: Appl. Phys. 2014, 47, 415303. open in new tab
  59. Hirai, H.; Kondo, K. Modified Phases of Diamond Formed Under Shock Compression and Rapid Quenching. Science 1991, 253, 772774. open in new tab
  60. Sankaran, K. J.; Kumar, N.; Kurian, J.; Ramadoss, R.; Chen, H. C.; Dash, S.; Tyagi, A. open in new tab
  61. K.; Lee, C. Y.; Tai, N. H.; Lin, I. N. Improvement in Tribological Properties by Modification of open in new tab
  62. Grain Boundary and Microstructure of Ultrananocrystalline Diamond Films. ACS Appl. Mater. Interfaces 2013, 5, 36143624. open in new tab
  63. Sankaran, K. J.; Huang, B. R.; Saravanan, A.; Manoharan, D.; Tai, N. H.; Lin, I. N. open in new tab
  64. Nirogen-Incorporated Ultrananocrystalline Diamond Microstructures From Bias-Enhanced
  65. Microwave N 2 /CH 4 -Plasma Chemical Vapor Deposition. Plasma Process. Polym. 2016, 13, 419. (58) Saravanan, A.; Huang, B. R.; Sankaran, K. J.; Kunuku, S.; Dong, C. L.; Leou, K. C.; Tai, N. H.; Lin, I. N. Bias-enhanced Nucleation and Growth Processes for Ultrananocrystalline Diamond Films in Ar/CH4 Plasma and Their Enhanced Plasma Illumination Properties. ACS Appl. Mater. Interfaces 2014, 6, 1056610575. open in new tab
  66. Butler, J. E.; Oleynik, I. A Mechanism for Crystal Twinning in the Growth of Diamond by Chemical Vapor Deposition. Philos. Trans. R. Soc. Lond. Math. Phys. Eng. Sci. 2008, 366, 295. open in new tab
  67. Bogdanowicz, R.; Sobaszek, M.; Ryl, J.; Gnyba, M.; Ficek, M.; Golunski, L.; Bock, W. open in new tab
  68. J.; Smietana, M.; Darowicki, K. Improved Surface Coverage of an Optical Fibre with Page 40 of 42
  69. ACS Paragon Plus Environment ACS Applied Materials & Interfaces open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 122 times

Recommended for you

Meta Tags