Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory
Abstract
In the present investigation, a new first-order shear deformation theory (OVFSDT) on the basis of the in-plane stability of the piezo-magnetoelectric composite nanoplate (PMEN) has been developed, and its precision has been evaluated. The OVFSDT has many advantages compared to the conventional first-order shear deformation theory (FSDT) such as needless of shear correction factors, containing less number of unknowns than the existing FSDT and strong similarities with the classical plate theory (CPT). The composite nanoplate consisted of BaTiO3-CoFe2O4, a kind of material by which coupling between piezoelectric and piezomagnetic in nanosize was established. The plate is surrounded by a motionless and stationary matrix that is embedded in a hygrothermal surround in order to keep it more stable, and to take into consideration the influences of the moisture and temperature on the plate's mechanical behavior. The governing equilibrium equations for the smart composite plate have been formulated using the higher-order nonlocal strain gradient theory within which both stress nonlocality and second strain gradient size-dependent terms are taken into account by using three independent length scale parameters. The extracted equations are solved by utilizing the analytical approaches by which numerical results are obtained with various boundary conditions. In order to evaluate the proposed theory and methods of solution, the outcomes in terms of critical buckling loads are compared with those from several available well-known references. Finally, after determining the accuracy of the results of the new plate theory, several parameters are investigated to show the influences of material properties of the ceramic composite nanoplate on the critical buckling loads.
Citations
-
7 9
CrossRef
-
0
Web of Science
-
8 4
Scopus
Authors (3)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.physe.2018.04.018
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES
no. 102,
pages 8 - 28,
ISSN: 1386-9477 - Language:
- English
- Publication year:
- 2018
- Bibliographic description:
- Malikan M., Nguyen V. B., Tornabene F.: Buckling analysis of piezo-magnetoelectric nanoplates in hygrothermal environment based on a novel one variable plate theory combining with higher-order nonlocal strain gradient theory// PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES -, (2018), s.8-28
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.physe.2018.04.018
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 83 times
Recommended for you
Electromagnetic forced vibrations of composite nanoplates using nonlocal strain gradient theory
- M. Malikan,
- V. B. Nguyen,
- F. Tornabene
Electromagnetic forced vibrations of composite nanoplates using nonlocal strain gradient theory
- M. Malikan,
- V. B. Nguyen,
- F. Tornabene