Capacitance Enhancement by Incorporation of Functionalised Carbon Nanotubes into Poly(3,4-Ethylenedioxythiophene)/Graphene Oxide Composites
Abstract
This paper reports on the role of oxidised carbon nanotubes (oxMWCNTs) present in poly-3,4-ethylenedioxytiophene (PEDOT)/graphene oxide (GOx) composite. The final ternary composites (pEDOT/GOx/oxMWCNTs) are synthesised by an electrodeposition process from the suspension-containing monomer, oxidised carbon nanotubes and graphene oxide. Dissociated functional groups on the surface of graphene oxide play a role of counter-ions for the polymer chains. Detailed physicochemical and electrochemical characterisation of the ternary composites is presented in the paper. The results prove that the presence of oxMWCNTs in the ternary composites doubles the capacitance values compared to the binary ones (450 vs. 270 F cm3 for PEDOT/GOx/oxMWCNTs and PEDOT/GOx, respectively). The amount of carbon nanotubes in the synthesis solution is crucial for physicochemical properties of the composites, their adhesion to the electrode substrate and the electrochemical performance.
Citations
-
6
CrossRef
-
0
Web of Science
-
7
Scopus
Authors (5)
Cite as
Full text
- Publication version
- Accepted or Published Version
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
Materials
no. 13,
pages 2419 - 2435,
ISSN: 1996-1944 - Language:
- English
- Publication year:
- 2020
- Bibliographic description:
- Cymann A., Sawczak M., Ryl J., Klugmann-Radziemska E., Wilamowska-Zawłocka M.: Capacitance Enhancement by Incorporation of Functionalised Carbon Nanotubes into Poly(3,4-Ethylenedioxythiophene)/Graphene Oxide Composites// Materials -Vol. 13,iss. 10 (2020), s.2419-2435
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/ma13102419
- Sources of funding:
- Verified by:
- Gdańsk University of Technology
seen 171 times
Recommended for you
Graphene oxide, reduced graphene oxide and composite thin films NO2 sensing properties
- K. Dunst,
- B. Scheibe,
- G. Nowaczyk
- + 2 authors
Synergistic effect of multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing application
- D. Ponnamma,
- K. K. Sadasivuni,
- M. Strankowski
- + 2 authors