Cascading transitions toward unconventional charge density wave states in the quasi-two-dimensional monophosphate tungsten bronze P4W16O56 - Publication - Bridge of Knowledge

Search

Cascading transitions toward unconventional charge density wave states in the quasi-two-dimensional monophosphate tungsten bronze P4W16O56

Abstract

Single crystals of the m = 8 member of the low-dimensional monophosphate tungsten bronzes (PO2)4(WO3)2m family were grown by chemical vapour transport technique and the high crystalline quality obtained allowed a reinvestigation of the physical and structural properties. Resistivity measurements revealed three anomalies at TC1 = 258 K, TC2 = 245 K and TC3 = 140 K, never observed until now. Parallel X-ray diffraction investigations showed a specific signature associated with three structural transitions, i.e. the appearance of different sets of satellite reflections below TC1, TC2 and TC3. Several harmonics of intense satellite reflections were observed, reflecting the non-sinusoidal nature of the structural modulations and a strong electron–phonon coupling in the material. These transitions could be associated with the formation of three successive unconventional charge density wave states.

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Authors (5)

Cite as

Full text

download paper
downloaded 29 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
IUCrJ no. 7, pages 184 - 192,
ISSN: 2052-2525
Language:
English
Publication year:
2020
Bibliographic description:
Duverger-Nédellec E., Pautrat A., Kolincio K., Hervé L., Pérez O.: Cascading transitions toward unconventional charge density wave states in the quasi-two-dimensional monophosphate tungsten bronze P4W16O56// IUCrJ -Vol. 7,iss. 2 (2020), s.184-192
DOI:
Digital Object Identifier (open in new tab) 10.1107/s2052252519016695
Bibliography: test
  1. Agilent (2014). CrysAlisPro. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.
  2. Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Domengè s, B., Hervieu, M., Raveau, B. & Tilley, R. J. D. (1984). J. Solid State Chem. 54, 10-28. open in new tab
  3. Dumas, J., Beierlein, U., Drouard, S., Hess, C., Groult, D., Labbé, Ph., Roussel, P., Bonfait, G., Marin, E. G. & Schlenker, C. (1999). J. Solid State Chem. 147, 320-327. open in new tab
  4. Dumas, J., Hess, C., Schlenker, C., Bonfait, G., Gomez Marin, E., Groult, D. & Marcus, J. (2000). Eur. Phys. J. B, 14, 73-82. open in new tab
  5. Efros, A. L. & Shklovskii, B. I. (1976). Phys. Status Solidi B, 76, 475- 485. open in new tab
  6. Fan, W., Cao, J., Seidel, J., Gu, Y., Yim, J. W., Barrett, C., Yu, K. M., Ji, J., Ramesh, R., Chen, L. Q. & Wu, J. (2011). Phys. Rev. B, 83, 235102. open in new tab
  7. Foury, P. & Pouget, J. P. (1993). Int. J. Mod. Phys. B, 07, 3973-4003. open in new tab
  8. Foury, P., Pouget, J. P., Wang, E. & Greenblatt, M. (1991). Europhys. Lett. 16, 485-490. open in new tab
  9. Galli, F., Feyerherm, R., Hendrikx, R. W. A., Dudzik, E., Nieuwenhuys, G. J., Ramakrishnan, S., Brown, S. D., Smaalen, S. & Mydosh, J. A. (2002). J. Phys. Condens. Matter, 14, 5067-5075. open in new tab
  10. Galli, F., Ramakrishnan, S., Taniguchi, T., Nieuwenhuys, G. J., Mydosh, J. A., Geupel, S., Lü decke, J. & van Smaalen, S. (2000). open in new tab
  11. Phys. Rev. Lett. 85, 158-161. open in new tab
  12. Giroult, J. P., Goreaud, M., Labbé, P. & Raveau, B. (1981). Acta Cryst. B37, 2139-2142. open in new tab
  13. Giroult, J. P., Goreaud, M., Labbé, Ph. & Raveau, B. (1982). J. Solid State Chem. 44, 407-414. open in new tab
  14. Greenblatt, M. (1996). Physics and Chemistry of Low-Dimensional Inorganic Conductors, edited by C. Schlenker, J. Dumas, M. Greenblatt & S. van Smaalen, pp. 15-43. New York: Plenum Press Guyot, H., Escribe-Filippini, C., Fourcaudot, G., Konate, K. & Schlenker, C. (1983). J. Phys. C. Solid State Phys. 16, L1227-L1232.
  15. Hess, C., Le Touze, C., Schlenker, C., Dumas, J., Groult, D. & Marcus, J. (1997a). Synth. Met. 86, 2419-2422. open in new tab
  16. Hess, C., Ottolenghi, A., Pouget, J. P., Schlenker, C., Hodeau, J. L. & Marcus, J. (1997b). Synth. Met. 86, 2169-2170.. open in new tab
  17. Hess, C., Schlenker, C., Bonfait, G., Ohm, T., Paulsen, C., Dumas, D., Teweldemedhin, Z. S., Greenblatt, M., Marcus, J. & Almeida, A. (1997c). Solid State Commun. 104, 663-668. open in new tab
  18. Hess, C., Schlenker, C., Dumas, J., Greenblatt, M. & Teweldemedhin, Z. S. (1996). Phys. Rev. B, 54, 4581-4588. open in new tab
  19. Kolincio, K. K. (2013). PhD thesis, Normandie Université, Caen.
  20. Kolincio, K. K., Daou, R., Pé rez, O., Gué rin, L., Fertey, P. & Pautrat, A. (2016). Phys. Rev. B, 94, 241118. open in new tab
  21. Labbé, Ph., Goreaud, M. & Raveau, B. (1986). J. Solid State Chem. 61, 324-331. open in new tab
  22. McMillan, W. L. (1976). Phys. Rev. B, 14, 1496-1502. open in new tab
  23. Miller, W., Smith, C. W., Mackenzie, D. S. & Evans, K. E. J. (2009). J. Mater. Sci. 44, 5441-5451. open in new tab
  24. Ottolenghi, A., Foury, P., Pouget, J. P., Teweldemedhin, Z. S., Greenblatt, M., Groult, D., Marcus, J. & Schlenker, C. (1995). open in new tab
  25. Synth. Met. 70, 1301-1302. open in new tab
  26. Ottolenghi, A. & Pouget, J. P. (1996). J. Phys. I Fr. 6, 1059-1083. open in new tab
  27. Peierls, R. E. (1955). Quantum Theory of Solids. London: Oxford University Press.
  28. Ramakrishnan, S. & van Smaalen, S. (2017). Rep. Prog. Phys. 80, 116501. Rö tger, A., Lehmann, J., Schlenker, C., Dumas, J., Marcus, J., Teweldemedhin, Z. S. & Greenblatt, M. (1994). Europhys. Lett. 25, 23-29.
  29. Roussel, P., Labbé, Ph., Groult, D., Domengè s, B., Leligny, H. & Grebille, D. (1996). J. Solid State Chem. 122, 281-290. open in new tab
  30. Roussel, P., Labbé, Ph., Leligny, H., Groult, D., Foury-Leylekian, P. & Pouget, J. P. (2000). Phys. Rev. B, 62, 176-188. open in new tab
  31. Roussel, P., Pé rez, O. & Labbé, P. (2001). Acta Cryst. B57, 603-632. research papers open in new tab
  32. IUCrJ (2020). 7, 184-192
  33. Duverger-Nédellec et al. Transitions toward charge density wave states in P 4 W 16 O 56 191 open in new tab
  34. Schlenker, C. (1996). Physics and Chemistry of Low-Dimensional Inorganic Conductors, edited by C. Schlenker, J. Dumas, M. Greenblatt & S. van Smaalen, pp. 115-139. New York: Plenum Press. open in new tab
  35. Schlenker, C., Hess, C., Le Touze, C. & Dumas, J. (1996). J. Phys. I Fr. 6, 2061-2078. open in new tab
  36. Sipos, B., Kusmartseva, A. F., Akrap, A., Berger, H., Forró, L. & Tutiš, E. (2008). Nat. Mater. 7, 960-965. open in new tab
  37. Wang, E., Greenblatt, M., Rachidi, I. E., Canadell, E., Whangbo, M. H. & Vadlamannati, S. (1989). Phys. Rev. B, 39, 12969-12972. open in new tab
  38. Witkowski, N., Garnier, M., Purdie, D., Baer, Y., Malterre, D. & Groult, D. (1997). Solid State Commun. 103, 471-475. open in new tab
  39. Duverger-Nédellec et al. Transitions toward charge density wave states in P 4 W 16 O 56 open in new tab
  40. IUCrJ (2020). 7, 184-192
Verified by:
Gdańsk University of Technology

seen 85 times

Recommended for you

Meta Tags