Cathodic activation of synthesized highly defective monoclinic hydroxyl‐functionalized ZrO2 nanoparticles for efficient electrochemical production of hydrogen in alkaline media - Publication - Bridge of Knowledge

Search

Cathodic activation of synthesized highly defective monoclinic hydroxyl‐functionalized ZrO2 nanoparticles for efficient electrochemical production of hydrogen in alkaline media

Abstract

The high electrochemical stability of Zirconia (ZrO2) at high potentials strongly suggested it as an alternative to carbon supports, which experience reduced efficiency due to some corrosion problems particularly during prolonged electrocatalysis activity. However, the use of ZrO2 was limited by its low electrical conductivity and surface area. In this work, we developed a methodology for synthesizing monoclinic ZrO2 NPs with increased surface area and improved electrical/electrocatalytic characteristics without using any carbon‐based co‐support material or any metallic nanoparticles. In this context, for the first time, highly defective hydroxyl‐functionalized ZrO2 NPs (designated here as ZT NPs) were prepared by a hydrothermal route in the presence of sodium tartrate as a mineralizer. XRD analysis demonstrated that the produced zirconia was semicrystalline microspheres, consisting of monoclinic ZrO2 NPs with high lattice defects. The addition of tartrate ions decreased the crystallite size and increased the defects and microstrain. At the same time, the alkaline hydrogen evolution reaction (HER) catalytic activity of ZrO2 NPs was significantly increased when using sodium tartrate as mineralizer; the overpotential required to obtain 10 mA cm−2 (η10) dropped down from 490 to merely 235 mV, while an exchange current density (jo) increased 12 times to 0.22 mA cm−2. The presence of structural defects (revealed by XRD) and the increased number of active surface sites contending O‐H groups (evidenced from ATR‐FTIR and XPS) as well as the enhanced electrochemical active surface area (confirmed from double‐layer capacitance measurements) were the main reasons behind the high catalytic performance. The ZrO2 NPs catalytic activity increased even further during the long‐term stability tests under severe cathodic conditions (ZT*, ZrO2 NPs obtained after the long‐term stability, has jo = 0.47 mA cm−2 and η10 = 140 mV), approaching the activity of Pt/C catalyst. This process was assisted by mineralizer removal from the catalyst (testified by XPS). Our studies revealed that ZT* are characterized by larger electroactive surface area and more structure defects compared to ZT, where surface area and microstrains resulting from surface hydroxylation open cavities in zirconia structure.

Citations

  • 1 1

    CrossRef

  • 0

    Web of Science

  • 1 1

    Scopus

Cite as

Full text

download paper
downloaded 73 times
Publication version
Accepted or Published Version
License
Copyright (2020 John Wiley & Sons Ltd)

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
INTERNATIONAL JOURNAL OF ENERGY RESEARCH no. 44, pages 10695 - 10709,
ISSN: 0363-907X
Language:
English
Publication year:
2020
Bibliographic description:
Mostafa N., Qhtani M., Alotaibi S., Zaki Z., Alharthi S., Cieślik M., Górnicka A., Ryl J., Boukherroub R., Amin M.: Cathodic activation of synthesized highly defective monoclinic hydroxyl‐functionalized ZrO2 nanoparticles for efficient electrochemical production of hydrogen in alkaline media// INTERNATIONAL JOURNAL OF ENERGY RESEARCH -Vol. 44,iss. 13 (2020), s.10695-10709
DOI:
Digital Object Identifier (open in new tab) 10.1002/er.5713
Verified by:
Gdańsk University of Technology

seen 133 times

Recommended for you

Meta Tags