Ceramic composites for single-layer fuel cells - Publication - MOST Wiedzy


Ceramic composites for single-layer fuel cells


Composite materials consisting of acceptor doped lanthanum orthoniobate electrolyte phase (La0.98Ca0.02NbO4) and Li2O:NiO:ZnO semiconducting phase were synthesized. The precursor powder of La0.98Ca0.02NbO4 was prepared in nanocrystalline (mechanosynthesis) and microcrystalline (solid-state synthesis) form. The composite can be applied in a single-layer fuel cell, because of the presence of two phases acting as an anode and a cathode simultaneously. X-ray diffraction data show that the materials consist of two expected phases. Scanning Electron Microscope images, with Energy Dispersive X-Ray analysis show that La0.98Ca0.02NbO4 as well as Li2O:NiO:ZnO are mixed together in the volume of the material. Open circuit voltage both for nano- and microcrystalline composite do not exceed 0.8 V. The single-layer fuel cell is degrading upon time and the voltage drop is observed. The processes of ZnO reduction and Zn diffusion and evaporation as responsible for cell degradation are discussed.


  • 0


  • 0

    Web of Science

  • 0



artykuły w czasopismach
Published in:
ISSN: 1293-2558
Publication year:
Bibliographic description:
Winiarz P., Miruszewski T., Wachowski S., Dzierzgowski K., Szpunar I., Zagórski K., Mielewczyk-Gryń A., Gazda M.: Ceramic composites for single-layer fuel cells// SOLID STATE SCIENCES -, (2020), s.1-20
Digital Object Identifier (open in new tab) 10.1016/j.solidstatesciences.2020.106113
Bibliography: test
  1. B. Zhu, R. Raza, G. Abbas, M. Singh, An Electrolyte-Free Fuel Cell Constructed from One Homogenous Layer with Mixed Conductivity, (2011) 2465-2469. doi:10.1002/adfm.201002471. open in new tab
  2. B. Zhu, P.D. Lund, R. Raza, Y. Ma, L. Fan, M. Afzal, J. Patakangas, Y. He, Y. Zhao, W. open in new tab
  3. Tan, Q. Huang, J. Zhang, H. Wang, Schottky Junction Effect on High Performance Fuel Cells Based on Nanocomposite Materials, (2015) 1-6. doi:10.1002/aenm.201401895. open in new tab
  4. B. Zhu, P. Lund, R. Raza, J. Patakangas, Q. Huang, L. Fan, M. Singh, A new energy conversion technology based on nano-redox and nano-device processes, Nano Energy. 2 (2013) 1179-1185. doi:10.1016/j.nanoen.2013.05.001. open in new tab
  5. B. Zhu, Solid oxide fuel cell ( SOFC ) technical challenges and solutions from nano- aspects, (2009) 1126-1137. doi:10.1002/er. open in new tab
  6. K. Zagórski, T. Miruszewski, D. Szymczewska, P. Jasinski, M. Gazda, Synthesis and testing of BCZY / LNZ mixed proton -electron conducting composites for fuel cell applications, Procedia Eng. 98 (2014) 121-128. doi:10.1016/j.proeng.2014.12.498. open in new tab
  7. K. Zagórski, S. Wachowski, D. Szymczewska, A. Mielewczyk-Gryń, P. Jasiński, M. conducting composite, J. Power Sources. 353 (2017) 230-236. doi:10.1016/j.jpowsour.2017.04.007. open in new tab
  8. R. Haugsrud, T. Norby, High-temperature proton conductivity in acceptor-doped open in new tab
  9. LaNbO4, Solid State Ionics. 177 (2006) 1129-1135. doi:10.1016/j.ssi.2006.05.011. open in new tab
  10. S. Wachowski, A. Mielewczyk-Gryń, K. Zagórski, C. Li, P. Jasiński, S.J. Skinner, R.
  11. Haugsrud, M. Gazda, A. Mielewczyk-Gryn, K. Zagorski, C. Li, P. Jasinski, S.J. Skinner, R. Haugsrud, M. Gazda, A. Mielewczyk-Gryń, K. Zagórski, C. Li, P. Jasiński, S.J.
  12. Skinner, R. Haugsrud, M. Gazda, Influence of Sb-substitution on ionic transport in lanthanum orthoniobates, J. Mater. Chem. A. 4 (2016) 11696-11707. doi:10.1039/C6TA03403A. open in new tab
  13. M. Huse, T. Norby, R. Haugsrud, Effects of A and B site acceptor doping on hydration and proton mobility of LaNbO4, Int. J. Hydrogen Energy. 37 (2012) 8004-8016. doi:10.1016/j.ijhydene.2011.10.020. open in new tab
  14. C. Solís, J.M. Serra, Adjusting the conduction properties of La0.995Ca 0.005NbO4 -δ by doping for proton conducting fuel cells electrode operation, Solid State Ionics. 190 (2011) 38-45. doi:10.1016/j.ssi.2011.03.008. open in new tab
  15. T. Miruszewski, P. Winiarz, K. Dzierzgowski, K. Wiciak, K. Zagórski, A. Morawski, A. Mielewczyk-Gryń, S. Wachowski, J. Strychalska-Nowak, M. Sawczak, M. Gazda, Synthesis, microstructure and electrical properties of nanocrystalline calcium doped lanthanum orthoniobate, J. Solid State Chem. 270 (2019). doi:10.1016/j.jssc.2018.12.034. open in new tab
  16. S. Wachowski, A. Mielewczyk-Gryn, M. Gazda, Effect of isovalent substitution on microstructure and phase transition of LaNb1−xMxO4 (M=Sb, V or ta; x=0.05 to 0.3), J. Solid State Chem. 219 (2014) 201-209. doi:10.1016/j.jssc.2014.07.041. open in new tab
  17. K.M. Dunst, J. Karczewski, T. Miruszewski, B. Kusz, M. Gazda, S. Molin, P. Jasinski, Journal Pre-proof open in new tab
  18. Investigation of functional layers of solid oxide fuel cell anodes for synthetic biogas reforming, Solid State Ionics. 251 (2013) 70-77. doi:10.1016/j.ssi.2013.03.002. open in new tab
  19. C.R. Orthoniobate, Monoclinic-to-Tetragonal Phase Transformation in a, 806 (1997) 0- 3.
  20. R. Haugsrud, T. Norby, Proton conduction in rare-earth ortho-niobates and ortho- tantalates, Nat. Mater. 5 (2006) 193-196. doi:10.1038/nmat1591. open in new tab
  21. A. T. Aldred, S.-K. Chan, M. H. Grimsditch and M. V. Nevitt Displacive Phase Transformation in Vanadium -Substituted Lanthanum Niobate 1983 MRS Meeting. MRS Proceedings / Volume 24 / 1983, 24 (1983) 1983. open in new tab
  22. H. Kedesdy, A. Drukalsky, X-Ray Diffraction Studies of the Solid State Reaction in the NiO-ZnO System, J. Am. Chem. Soc. 76 (1954) 5941-5946. doi:10.1021/ja01652a013. open in new tab
  23. X.-H. Wang, I.-W. Chen, Sintering dense nanocrystalline ceramics without final-stage grain growth, Nature. 404 (2000) 168-171.
  24. B. Zhu, H. Qin, R. Raza, Q. Liu, L. Fan, J. Patakangas, P. Lund, A single-component fuel cell reactor, Int. J. Hydrogen Energy. 36 (2011) 8536-8541. doi:10.1016/j.ijhydene.2011.04.082. Journal Pre-proof open in new tab
Verified by:
Gdańsk University of Technology

seen 10 times

Recommended for you

Meta Tags