Comprehensive study on graphene hydrogels and aerogels synthesis and their ability of gold nanoparticles adsorption - Publication - Bridge of Knowledge

Search

Comprehensive study on graphene hydrogels and aerogels synthesis and their ability of gold nanoparticles adsorption

Abstract

Graphene hydrogels were prepared by ascorbic acid-assisted gelation of graphene oxide (GO) aqueous suspensions both in acidic and basic conditions. Different mass ratio of ascorbic acid (AA) to GO was used (namely 20:1 and 10:1). In order to eliminate the influence of AA on the final structure of hydrogels, samples without AA were prepared by a hydrothermal gelation of GO in an autoclave. An in-depth structural characterization of the obtained materials was performed before and after supercritical drying by means of FTIR, XRD and SEM. Surface area of hydrogels was determined using the methylene blue adsorption method. BET surface area and pore volume analysis of aerogels was also performed. The effect of initial GO concentration and volume on the final graphene aerogels structure was determined. Electrochemical properties of samples were also evaluated. Finally, gold nanoparticles (Au NP) adsorption on graphene hydro- and aerogels was presented for the first time. Graphene hydrogels and aerogels are promising candidates for practical applications e.g. in the Au NP removal from wastewater.

Citations

  • 3 3

    CrossRef

  • 0

    Web of Science

  • 3 2

    Scopus

Cite as

Full text

download paper
downloaded 214 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS no. 528, pages 65 - 73,
ISSN: 0927-7757
Language:
English
Publication year:
2017
Bibliographic description:
Kondratowicz I., Żelechowska K., Nadolska M., Jażdżewska A., Gazda M.: Comprehensive study on graphene hydrogels and aerogels synthesis and their ability of gold nanoparticles adsorption// COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS. -Vol. 528, (2017), s.65-73
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.colsurfa.2017.05.063
Bibliography: test
  1. X. Dong, X. Wang, L. Wang, H. Song, H. Zhang, W. Huang, P. Chen, 3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing, ACS Appl. Mater. Interfaces 4 (2012) 3129-3133, http://dx.doi.org/10. 1021/am300459m. open in new tab
  2. D.A.C. Brownson, L.C.Z. Figueiredo-Filho, X. Ji, M. Gomez-Mingot, J. Iniesta, O. Fatibello-Filho, D.K. Kampourisa, C.B. Banks, Freestanding three-dimensional graphene foam gives rise to beneficial electrochemical signatures within non- aqueous media, J. Mater. Chem. A 1 (2013) 5962, http://dx.doi.org/10.1039/ C3TA10727B. open in new tab
  3. Y. Zhong, Z. Mi, F. Huang, T. Lin, D. Wan, Effect of graphene aerogel on thermal behavior of phase change materials for thermal management, Sol. Energy Mater. open in new tab
  4. Sol. C 113 (2013) 195-200, http://dx.doi.org/10.1016/j.solmat.2013.01.046. open in new tab
  5. C.C. Ji, M.W. Xua, S.J. Bao, C.J. Cai, Z.J. Lu, H. Chai, F. Yang, H. Wei, Self-assembly of three-dimensional interconnected graphene-based aerogels and its application in supercapacitors, J. Colloid Interface Sci 407 (2013) 416-424, http://dx.doi.org/10. 1016/j.jcis.2013.06.054. open in new tab
  6. I. Kondratowicz, K. Żelechowska, D. Majdecka, R. Bilewicz, Synthesis and mod- ification of reduced graphene oxide aerogels for biofuel cell applications, Mat. Sci. Poland 33 (2015) 292-300, http://dx.doi.org/10.1515/msp-2015-0042. open in new tab
  7. K. Żelechowska, B. Trawiński, S. Dramińska, D. Majdecka, R. Bilewicz, B. Kusz, Oxygen biosensor based on carbon nanotubes directly grown on graphitic substrate, Sens. Actuators B: Chem. 240 (2017) 1308-1313, http://dx.doi.org/10.1016/j.snb. 2016.09.081. open in new tab
  8. P. Liu, Z. Fan, A. Mikhalchan, T. Tran, D. Jewell, H. Duong, A. Marconnet, Continuous carbon nanotube-based fibers and films for applications requiring enhanced heat dissipation, ACS Appl. Mater. Interfaces 8 (2016) 17461-17471, http://dx.doi.org/10.1021/acsami.6b04114. open in new tab
  9. T. Tran, Z. Fan, P. Liu, H. Duong, Advanced morphology-controlled manufacturing of carbon nanotube fibers, thin films and aerogels from aerogel technique, Asia Pacific Confederation of Chemical Engineering Congress 2015: APCChE 2015, Incorporating CHEMECA 2015, Melbourne : Engineers Australia, 2015, pp. 2444-2451 (ISBN: 9781922107473).
  10. H. Duong, F. Gong, P. Liu, T. Tran, Advanced fabrication and properties of aligned carbon nanotube composites: experiments and modeling, Carbon Nanotube -Curr. open in new tab
  11. Progress Polym. Compos. Intech (2015) 47-72, http://dx.doi.org/10.5772/62510. open in new tab
  12. H. Cheng, P. Kohl, P. Liu, T. Tran, H. Duong, Continuous self-assembly of carbon nanotube thin films and their composites for supercapacitors, Colloid Surf. A 481 (2015) 626-632, http://dx.doi.org/10.1016/j.colsurfa.2015.06.039. open in new tab
  13. Y. Ding, J. Zhu, C. Wang, B. Dai, Y. Li, Y. Qin, F. Xu, Q. Peng, Z. Yang, J. Bai, W. Cao, Y. Yuan, Y. Li, Multifunctional three-dimensional graphene nanoribbons open in new tab
  14. Fig. 7. SEM images of A. dried graphene hydrogel and B. graphene aerogel after gold nanoparticles adsorption. Arrows point gold nanoparticles. Scale 20 μm. Inset: Scale 250 nm. open in new tab
  15. Fig. 8. A. Au NP adsorption vs. MB surface area for graphene hydrogels and B. Au NP adsorption vs. BET surface area for graphene aerogels prepared in AC anc BC. composite sponge, Carbon 104 (2016) 133-140, http://dx.doi.org/10.1016/j. carbon.2016.03.058. open in new tab
  16. S. Nardecchia, D. Carriazo, M.L. Ferrer, M.C. Gutierrez, F. del Monte, Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: synthesis and applications, Chem. Soc. Rev. 42 (2013) 794, http://dx.doi.org/10.1039/C2CS35353A. open in new tab
  17. B. Yaocai, R.B. Rakhi, W. Chen, H.N. Alshareef, Effect of pH-induced chemical modification of hydrothermally reduced graphene oxide on supercapacitor perfor- mance, J. Power Sources 233 (2013) 313-319, http://dx.doi.org/10.1016/j. jpowsour.2013.01.122. open in new tab
  18. H.N. Lim, N.M. Huang, S.S. Lim, I. Harrison, C.H. Chia, Fabrication and char- acterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth, Int. J. Nanomed. 6 (2011) 1817-1823, http://dx. doi.org/10.2147/IJN.S23392. open in new tab
  19. Y. Xu, K. Sheng, C. Li, G. Shi, Self-assembled graphene hydrogel via a one-step hydrothermal process, ACS Nano 4 (2010) 4324-4330, http://dx.doi.org/10.1021/ nn101187z. open in new tab
  20. K. Hu, X. Xie, T. Szkopek, M. Cerruti, Understanding hydrothermally reduced graphene oxide hydrogels: from reaction products to hydrogel properties, Chem. Mater. 28 (6) (2016) 1756-1768, http://dx.doi.org/10.1021/acs.chemmater. 5b04713. open in new tab
  21. Y. Xie, X. Sheng, X. Delong, L. Zixian, Z. Xinya, L. Zhong, Fabricating graphene hydrogels with controllable pore structure via one-step chemical reduction process, Carbon 109 (2016) 673-680, http://dx.doi.org/10.1016/j.carbon.2016.08.079. open in new tab
  22. S.T. Nguyen, H.T. Nguyen, A. Rinaldi, N.P.V. Nguyen, Z. Fan, H.M. Duong, Morphology control and thermal stability of binderless-graphene aerogels from graphite for energy storage applications, Colloid Surf. A 414 (2012) 352-358, http://dx.doi.org/10.1016/j.colsurfa.2012.08.048. open in new tab
  23. Z. Fan, D. Zhi Yong Tng, S.T. Nguyen, J. Feng, C. Lin, P. Xiao, L. Lu, H.M. Duong, Morphology effects on electrical and thermal properties of binderless graphene aerogels, Chem. Phys. Lett. 561-562 (2013) 92-96, http://dx.doi.org/10.1016/j. cplett.2013.01.033. open in new tab
  24. X.H. Xia, D.L. Chao, Y.Q. Zhang, Z.X. Shen, Three-dimensional graphene and their integrated electrodes, Nano Today 9 (2014) 785-807, http://dx.doi.org/10.1016/j. nantod.2014.12.001. open in new tab
  25. J.N. Tiwari, K. Mahesh, N.H. Le, K. Christian Kemp, R. Timilsina, R.N. Tiwari, K.S. Kim, Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions, Carbon 56 (2013) 173-182, http://dx.doi.org/ 10.1016/j.carbon.2013.01.001. open in new tab
  26. J. Li, H. Meng, S. Xie, B. Zhang, L. Li, H. Ma, J. Zhanga, M. Yua, Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids, J. Mater. Chem. A 2 (2014) 2934, http://dx.doi.org/ 10.1039/C3TA14725H. open in new tab
  27. W. Peng, H. Li, Y. Liu, S. Song, A review on heavy metal ions adsorption from water by graphene oxide and its composites, J. Mol. Liq. 230 (2017) 496-504, http://dx. doi.org/10.1016/j.molliq.2017.01.064. open in new tab
  28. J. Wang, B. Chen, Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials, Chem. Eng. J. 281 (2015) 379-388, http://dx.doi.org/10.1016/j.cej.2015.06.102. open in new tab
  29. H. Huang, T. Chen, X. Liu, H. Ma, Ultrasensitive and simultaneous detection of heavy metal ions based on three-dimensional graphene-carbon nanotubes hybrid electrode materials, Anal. Chim. Acta 852 (2014) 45-54, http://dx.doi.org/10. 1016/j.aca.2014.09.010. open in new tab
  30. V.K. Gupta, S. Agarwal, A.K. Bharti, H. Sadegh, Adsorption mechanism of functionalized multi-walled carbon nanotubes for advanced Cu (II) removal (in press) http://dx.doi.org/10.1016/j.molliq.2017.01.083. open in new tab
  31. R. Zare-Dorabei, S.M. Ferdowsi, A. Barzin, A. Tadjarodi, Highly efficient simulta- neous ultrasonic-assisted adsorption of Pb(II), Cd(II), Ni(II) and Cu (II) ions from aqueous solutions by graphene oxide modified with 2,20-dipyridylamine: central composite design optimization, Ultrason. Sonochem. 32 (2016) 265-276, http://dx. doi.org/10.1016/j.ultsonch.2016.03.020. open in new tab
  32. Y. Zhang, Y. Liu, X. Wang, Z. Sun, J. Ma, T. Wu, F. Xing, J. Gao, Porous graphene oxide/carboxymethyl cellulose monoliths, with highmetal ion adsorption, Carbohyd. Polym. 101 (2014) 392-400, http://dx.doi.org/10.1016/j.carbpol.2013. 09.066. open in new tab
  33. L.P. Lingamdinnea, Y.L. Choi, I.S. Kimb, J.K. Yang, J.R. Kodurub, Y.Y. Chang, Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides, J. Hazard. Mater. 326 (2017) 145-156, http://dx.doi.org/10.1016/j.jhazmat.2016. 12.035. open in new tab
  34. S. Goswami, P. Banerjee, S. Datta, A. Mukhopadhayay, P. Das, Graphene oxide nanoplatelets synthesized with carbonized agro-waste biomass as green precursor and its application for the treatment of dye rich wastewater, Process Saf. Environ. 106 (2017) 163-172, http://dx.doi.org/10.1016/j.psep.2017.01.003. open in new tab
  35. M. Heidarizad, S.S. Şengör, Synthesis of graphene oxide/magnesium oxide nano- composites with high-rate adsorption of methylene blue, J. Mol. Liq. 224 (2016) 607-617, http://dx.doi.org/10.1016/j.molliq.2016.09.049. open in new tab
  36. Z. Zhang, F. Xiao, Y. Guo, S. Wang, Y. Liu, One-pot self-assembled three- dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities, ACS Appl. Mater. Interfaces 5 (2013) 2227-2233, http://dx.doi.org/10.1021/am303299r. open in new tab
  37. Y. Yang, C.L. Long, H.P. Li, Q. Wang, Z.G. Yang, Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry, Sci. Total. Environ. 563-564 (2016) 996-1007, http:// dx.doi.org/10.1016/j.scitotenv.2015.12.150. open in new tab
  38. S.P. Mandyla, G. Tsogas, A.G. Vlessidis, D.L. Giokas, Determination of gold nanoparticles in environmental water samples by second-order optical scattering using dithiotreitol-functionalized CdS quantum dots after cloud point extraction, J. Hazard. Mater. 323 (2017) 67-74, http://dx.doi.org/10.1016/j.jhazmat.2016.03. 039. open in new tab
  39. B. Nowacka, J.F. Ranville, S. Diamond, J.A. Gallego-Urrea, C. Metcalfe, J. Rose, N. Horne, A.A. Koelmans, S.J. Klaine, Potential scenarios for nanomaterials release and subsequent alteration in the environment, Environ. Toxicol. Chem. 31 (2012) 50-59, http://dx.doi.org/10.1002/etc.726. open in new tab
  40. Q. Sun, Y. Li, T. Tang, Z. Yuan, C.P. Yu, Removal of silver nanoparticles by coagulation processes, J. Hazard. Mater. 261 (2013) 414-420, http://dx.doi.org/ 10.1016/j.jhazmat.2013.07.066. open in new tab
  41. D.F. Lawler, A.M. Mikelonis, I. Kim, B.L.T. Lau, S. Youn, Silver nanoparticle removal from drinking water: flocculation/sedimentation or filtration, Water Sci. Techol.: Water Supply 13.5 (2013) 1181-1187, http://dx.doi.org/10.2166/ws. 2013.125. open in new tab
  42. D. Setyono, S. Valiyaveettil, Functionalized paper-A readily accessible adsorbent for removal of dissolved heavy metal salts and nanoparticles from water, J. Hazard. Mater. 302 (2016) 120-128, http://dx.doi.org/10.1016/j.jhazmat.2015.09.046. open in new tab
  43. K. Żelechowska, I. Kondratowicz, M. Gazda, Graphene hydrogels with embedded metal nanoparticles as efficient catalysts in 4-nitrophenol reduction and methylene blue decolorization, Pol. J. Chem. Technol. 18 (4) (2017) 47-55, http://dx.doi.org/ 10.1515/pjct-2016-0070. open in new tab
  44. N.N. Long, L.V. Vu, C.H. Kiem, S.C. Doanh, C.T. Nguyet, P.T. Hang, N.D. Thien, L.M. Quynh, Synthesis and optical properties of colloidal gold nanoparticles, J. Phys.: Conf. Ser. 187 (2009) 012026, http://dx.doi.org/10.1088/1742-6596/187/ 1/012026. open in new tab
  45. G. Luo, H. Huang, C. Lei, Z. Cheng, X. Wu, S. Tang, Y. Du, Facile synthesis of porous graphene as binder-free electrode for supercapacitor application, Appl. Surf. Sci 366 (2016) 46-52, http://dx.doi.org/10.1016/j.apsusc.2016.01.015. open in new tab
  46. Z. Fan, Y. Tng, C.X. Ting Lima, P. Liu, S.T. Nguyen, P. Xiao, A. Marconnet, C.Y.H. Lima, H.M. Duong, Thermal and electrical properties of graphene/carbon nanotube aerogels, Colloids Surf. A 445 (2014) 48-53, http://dx.doi.org/10.1016/j. colsurfa.2013.12.083. open in new tab
  47. Z. Sui, X. Zhang, Y. Lei, Y. Luo, Easy and green synthesis of reduced graphite oxide- based Hydrogels, Carbon 49 (2011) 4314-4321, http://dx.doi.org/10.1016/j. carbon.2011.06.006. open in new tab
  48. J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Reduction of graphene oxide via L-ascorbic acid, Chem. Commun. 46 (2010) 1112-1114, http://dx.doi.org/10. 1039/B917705A. open in new tab
  49. A.P. Goldstein, W. Mickelson, A. Machness, G. Lee, M.A. Worsley, L. Woo, A. Zettl, Simultaneous sheet cross-linking and deoxygenation in the graphene oxide sol-gel transition, J. Phys. Chem. C 118 (2014) 28855-28860, http://dx.doi.org/10.1021/ jp5092027. open in new tab
  50. H. Bai, C. Li, X. Wang, G. Shi, On the gelation of graphene oxide, J. Phys. Chem. C 115 (2011) 5545-5551, http://dx.doi.org/10.1021/jp1120299. open in new tab
  51. J.W. Yoo, D.S. Yun, H.J. Kim, Influence of reaction parameters on size and shape of silica nanoparticles, J. Nanosci. Nanotechnol. 6 (11) (2006) 3343-3346, http://dx. doi.org/10.1166/jnn.2006.006. open in new tab
  52. G.A. Rance, A.N. Khlobystov, Interactions of carbon nanotubes and gold nanopar- ticles: the effects of solvent dielectric constant and temperature on controlled assembly of superstructures, Dalton Trans. 43 (2014) 7400, http://dx.doi.org/10. 1039/c3dt53372g. open in new tab
  53. F. Wang, J. Zhao, M. Zhu, J. Yu, Y.-S. Hub, H. Liu, Selective adsorption-deposition of gold nanoparticles onto monodispersed hydrothermal carbon spherules: a reduction-deposition coupled mechanism, J. Mater. Chem. A 3 (2015) 1666, http:// dx.doi.org/10.1039/C4TA05597G. open in new tab
Verified by:
Gdańsk University of Technology

seen 158 times

Recommended for you

Meta Tags