Computational modeling of molecularly imprinted polymers as a green approach to the development of novel analytical sorbents - Publication - Bridge of Knowledge

Search

Computational modeling of molecularly imprinted polymers as a green approach to the development of novel analytical sorbents

Abstract

The development of novel molecularly imprinted polymers (MIP) sorbents for specific chemical compounds require a lot of tedious and time-consuming laboratory work. Significant quantities of solvents and reagents are consumed in the course of the verification of appropriate configurations of polymerization reagents. Implementation of molecular modeling in the MIP sorbent development process appears to provide a solution to this problem. Appropriate simulations and computations facilitate the determination of the nature of interaction between the reagents and thus the selection of the best configuration of chemicals for the preparation of the sorbent. The article presents literature information on major computer software used for molecular modeling, its application in the development of MIP sorbents, as well as the advantages resulting from the implementation of computer-assisted techniques. The appropriate choice of polymerization reagents and conditions allows for a significant reduction of the adverse environmental impact of the entire laboratory process.

Citations

  • 7 7

    CrossRef

  • 0

    Web of Science

  • 7 3

    Scopus

Authors (4)

Cite as

Full text

download paper
downloaded 308 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
TRAC-TRENDS IN ANALYTICAL CHEMISTRY no. 98, pages 64 - 78,
ISSN: 0165-9936
Language:
English
Publication year:
2018
Bibliographic description:
Marć M., Kupka T., Wieczorek P., Namieśnik J.: Computational modeling of molecularly imprinted polymers as a green approach to the development of novel analytical sorbents// TRAC-TRENDS IN ANALYTICAL CHEMISTRY. -Vol. 98, (2018), s.64-78
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.trac.2017.10.020
Bibliography: test
  1. A. Gałuszka, Z. Migaszewski, J. Namie snik, The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices, Trends Anal. Chem. 50 (2013) 78e84. open in new tab
  2. S. Garrigues, M. de la Guardia, Non-invasive analysis of solid samples, Trends Anal. Chem. 43 (2013) 161e173. open in new tab
  3. M.M. Moein, A. Abdel-Rehim, M. Abdel-Rehim, Microextraction by packed sorbent (MEPS), Trends Anal. Chem. 67 (2015) 34e44. open in new tab
  4. S. Armenta, S. Garrigues, M. de la Guardia, The role of green extraction techniques in green analytical chemistry, Trends Anal. Chem. 71 (2015) 2e8. open in new tab
  5. C.J. Welch, N. Wu, M. Biba, R. Hartman, T. Brkovic, X. Gong, R. Helmy, W. Schafer, J. Cuff, Z. Pirzada, L. Zhou, Greening analytical chromatography, Trends Anal. Chem. 29 (2010) 667e680. open in new tab
  6. M. Zhou, Y. Pan, Z. Chen, W. Yang, B. Li, Selection and evaluation of green production strategies: analytic and simulation models, J. Clean. Prod. 26 (2012) 9e17. open in new tab
  7. B.H. Fumes, M.R. Silva, F.N. Andrade, C.E.D. Nazario, F.M. Lanças, Recent ad- vances and future trends in new materials for sample preparation, Trends Anal. Chem. 71 (2015) 9e25. open in new tab
  8. Y. Moliner-Martinez, R. Herr aez-Hern andez, J. Verdú-Andr es, C. Molins- Legua, P. Campíns-Falc o, Recent advances of in-tube solid-phase micro- extraction, Trends Anal. Chem. 71 (2015) 205e213. open in new tab
  9. E.A. Souza-Silva, N. Reyes-Garc es, G.A. G omez-Ríosa, E. Boyacı, B. Bojko, J. Pawliszyn, A critical review of the state of the art of solid-phase micro- extraction of complex matrices III. Bioanalytical and clinical applications, Trends Anal. Chem. 71 (2015) 249e264. open in new tab
  10. E.A. Souza-Silva, R. Jiang, A. Rodríguez-Lafuente, E. Gionfriddo, J. Pawliszyn, A critical review of the state of the art of solid-phase microextraction of complex matrices I. Environmental analysis, Trends Anal. Chem. 71 (2015) 224e235. open in new tab
  11. S. Armenta, M. de la Guardia, Green chromatography for the analysis of foods of animal origin, Trends Anal. Chem. 80 (2016) 517e530. open in new tab
  12. C. Rossetti, O.G. Ore, B. Sellergren, T.G. Halvorsen, L. Reubsaet, Exploring the peptide retention mechanism in molecularly imprinted polymers, Anal. Bioanal. Chem. 409 (2017) 5631e5643. open in new tab
  13. C.-M. Dai, J. Zhang, Y.-L. Zhang, X.-F. Zhou, Y.-P. Duan, S.G. Liu, Selective removal of acidic pharmaceuticals from contaminated lake water using multi-templates molecularly imprinted polymer, Chem. Eng. J. 211e212 (2012) 302e309. open in new tab
  14. M. Villar-Navarro, M.J. Martín-Valero, R.M. Fern andez-Torres, M. Callej on- Moch on, M. A. Bello-L opez, Easy, fast and environmental friendly method for the simultaneous extraction of the 16 EPA PAHs using magnetic molecular imprinted polymers (mag-MIPs), J. Chromatogr. B 1044e1045 (2017) 63e69. open in new tab
  15. G. Vasapollo, R. Del Sole, L. Mergola, M.R. Lazzoi, A. Scardino, S. Scorrano, G. Mele, Molecularly imprinted polymers: present and future prospective, Int. J. Mol. Sci. 12 (2011) 5908e5945. open in new tab
  16. L. Yang, R. Said, M. Abdel-Rehim, Sorbent, device, matrix and application in microextraction by packedsorbent (MEPS): a review, J. Chromatogr. B 1043 (2017) 33e43. open in new tab
  17. Post-print of: Marć M., Kupka T., Wieczorek P., Namieśnik J.: Computational modeling of molecularly imprinted polymers as a green approach to the development of novel analytical sorbents. TRAC-TRENDS IN ANALYTICAL CHEMISTRY. Vol. 98, (2018), p. 64-78. DOI: 10.1016/j.trac.2017.10.020 open in new tab
  18. A. Martın-Esteban, Molecularly-imprinted polymers as a versatile, highly selective tool in sample preparation, Trends Anal. Chem. 45 (2013) 169e181. open in new tab
  19. M. Resmini, Molecularly imprinted polymers as biomimetic catalysts, Anal. Bioanal. Chem. 402 (2012) 3021e3026. open in new tab
  20. S. Khan, T. Bhatia, P. Trivedi, G.N.V. Satyanarayana, K. Mandrah, P.N. Saxena, M.K.R. Mudiam, S.K. Roy, Selective solid-phase extraction using molecularly imprinted polymer as a sorbent for the analysis of fenarimol in food samples, Food Chem. 199 (2016) 870e875. open in new tab
  21. Y. Ge, B. Butler, F. Mirza, S. Habib-Ullah, D. Fei, Smart molecularly imprinted polymers: recent developments and applications, Macromol. Rapid Com- mun. 34 (2013) 903e915. open in new tab
  22. D. Cleland, A. McCluskey, The use of effective fragment potentials in the design and synthesis of molecularly imprinted polymers for the group recognition of PCBs, Org. Biomol. Chem. 11 (2013) 4646e4656. open in new tab
  23. S. Piletsky, E. Piletska, K. Karim, G. Foster, C. Legge, A. Turner, Custom syn- thesis of molecular imprinted polymers for biotechnological application. Preparation of a polymer selective for tylosin, Anal. Chim. Acta 504 (2004) 123e130. open in new tab
  24. F. Yanez, I. Chianella, S.A. Piletsky, A. Concheiro, C. Alvarez-Lorenzo, Computational modeling and molecular imprinting for the development of acrylic polymers with high affinity for bile salts, Anal. Chim. Acta 659 (2010) 178e185. open in new tab
  25. H. Zhang, L. Ye, K. Mosbach, Non-covalent molecular imprinting with emphasis on its application in separation and drug development, J. Mol. Recognit. 19 (2006) 248e259. open in new tab
  26. L. Ye, K. Mosbach, Molecular imprinting: synthetic materials as substitutes for biological antibodies and receptors, Chem. Mater. 20 (2008) 859e868. open in new tab
  27. A. Azimi, M. Javanbakht, Computational prediction and experimental selec- tivity coefficients for hydroxyzine and cetirizine molecularly imprinted polymer based potentiometric sensors, Anal. Chim. Acta 812 (2014) 184e190. open in new tab
  28. N.T. Abdel Ghani, R.M. El Nashar, F.M. Abdel-Haleem, A. Madbouly, Computational design, synthesis and application of a new selective molec- ularly imprinted polymer for electrochemical detection, Electroanalysis 28 (2016) 1530e1538.
  29. M.M. Cascant, C. Breil, S. Garrigues, M. de la Guardia, A.S. Fabiano-Tixier, F. Chemat, A green analytical chemistry approach for lipid extraction: computation methods in the selection of green solvents as alternative to hexane, Anal. Bioanal. Chem. 409 (2017) 3527e3539. open in new tab
  30. I.A. Nicholls, H.S. Andersson, C. Charlton, H. Henschel, B.C.G. Karlsson, J.G. Karlsson, J. O'Mahony, A.M. Rosengren, K.J. Rosengren, S. Wikman, Theoretical and computational strategies for rational molecularly imprinted polymer design, Biosens. Bioelectron. 25 (2009) 543e552. open in new tab
  31. A. Pardo, L. Mespouille, P. Dubois, P. Duez, B. Blankert, Targeted extraction of active compounds from natural products by molecularly imprinted poly- mers, Cent. Eur. J. Chem. 10 (2012) 751e765. open in new tab
  32. Y. Wen, L. Chen, J. Li, D. Liu, L. Chen, Recent advances in solid-phase sorbents for sample preparation prior to chromatographic analysis, Trends Anal. Chem. 59 (2014) 26e41. open in new tab
  33. A. Speltini, A. Scalabrini, F. Maraschi, M. Sturini, A. Profumo, Newest appli- cations of molecularly imprinted polymers for extraction of contaminants from environmental and food matrices: a review, Anal. Chim. Acta 974 (2017) 1e26. open in new tab
  34. J. Płotka-Wasylka, M. Mar c, N. Szczepa nska, Jacek Namie snik, New polymeric materials for solid phase extraction, Crit. Rev. Anal. Chem. 47 (2017) 373e383. open in new tab
  35. T. Shahar, N. Tal, D. Mandler, Molecularly imprinted polymer particles: for- mation, characterization and application, Colloids Surf. A Physicochem. Eng. Asp. 495 (2016) 11e19. open in new tab
  36. J. Bastide, J.-P. Cambona, F. Breton, S.A. Piletsky, R. Rouillon, The use of molecularly imprinted polymers for extraction of sulfonylurea herbicides, Anal. Chim. Acta 542 (2005) 97e103. open in new tab
  37. M. Liu, T.M. Tran, A.A.A. Elhaj, S.B. Torsetnes, O.N. Jensen, B. Sellergren, K. Irgum, Molecularly imprinted porous monolithic materials from mela- mineÀformaldehyde for selective trapping of phosphopeptides, Anal. Chem. 89 (2017) 9491e9501. open in new tab
  38. W.J. Cheong, S.H. Yang, F. Ali, Molecular imprinted polymers for separation science: a review of reviews, J. Sep. Sci. 36 (2013) 609e628. open in new tab
  39. G. Ertürk, B. Mattiasson, From imprinting to microcontact imprintingda new tool to increase selectivity in analytical devices, J. Chromatogr. B 1021 (2016) 30e44. open in new tab
  40. S. Pardeshi, R. Patrikar, R. Dhodapkar, A. Kumar, Validation of computational approach to study monomer selectivity toward the template Gallic acid for rational molecularly imprinted polymer design, J. Mol. Model 18 (2012) 4797e4810. open in new tab
  41. J.A. Garcia-Calzon, M.E. Diaz-Garcia, Characterization of binding sites in molecularly imprinted polymers, Sens. Actuator B-Chem. 123 (2007) 1180e1194. open in new tab
  42. C. He, Y. Long, J. Pan, K. Li, F. Liu, Application of molecularly imprinted polymers to solid-phase extraction of analytes from real samples, J. Biochem. Biophys. Methods 70 (2007) 133e150. open in new tab
  43. P.A.G. Cormack, A.Z. Elorza, Molecularly imprinted polymers: synthesis and characterization, J. Chromatogr. B 804 (2004) 173e182. open in new tab
  44. F. Jensen, Introduction to Computational Chemistry, John Wiley and Sons, Chichester, England, 1999.
  45. J.B. Foresman, A. Frisch, in: Exploring Chemistry with Electronic Structure Methods, second ed., Gaussian Inc, Pittsburg, PA, 1996. open in new tab
  46. J.J. Terracina, M. Bergkvist, S.T. Sharfstein, Computational investigation of stoichiometric effects, binding site heterogeneities, and selectivities of molecularly imprinted polymers, J.Mol. Model 22 (2016) 139. open in new tab
  47. Q.Y. Ang, S.C. Low, Morphology and kinetic modeling of molecularly imprinted organosilanol polymer matrix for specific uptake of creatinine, Anal. Bioanal. Chem. 407 (2015) 6747e6758. open in new tab
  48. F. Breton, R. Rouillon, E.V. Piletska, K. Karim, A. Guerreiro, I. Chianella, S.A. Piletsky, Virtual imprinting as a tool to design efficient MIPs for photosynthesis-inhibiting herbicides, Biosens. Bioelectron. 22 (2007) 1948e1954. open in new tab
  49. C. M€ oller, M.S. Plesset, Note on an approximation treatment for many- electron system, Phys. Rev. 46 (1934) 618e622.
  50. W. Kohn, L.J. Sham, Self-consistent equations including exchange and cor- relation effects, Phys. Rev. 140 (1965) A1133eA1138. open in new tab
  51. T.H. Dunning Jr., Gaussian basis sets for use in correlated molecular calcu- lations. I. The atoms boron through neon and hydrogen, J. Chem. Phys. 90 (1989) 1007e1023. open in new tab
  52. F. Jensen, Polarization consistent basis sets: principles, J. Chem. Phys. 115 (2001) 9113e9125. open in new tab
  53. T.H. Dunning Jr., K.A. Peterson, Use of Moller-Plesset perturbation theory in molecular calculations: spectroscopic constants of first row diatomic mole- cules, J. Chem. Phys. 108 (1998) 4761e4771. open in new tab
  54. T.H. Dunning Jr., A road map for the calculation of molecular binding en- ergies, J. Phys. Chem. A 104 (2000) 9062e9080.
  55. A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, H. Koch, J. Olsen, A.K. Wilson, Basis-set convergence in correlated calculations on Ne, N 2 , and H 2 O, Chem. Phys. Lett. 286 (1998) 243e252. open in new tab
  56. T. Kupka, M. Stach ow, M. Nieradka, J. Kaminský, T. Pluta, Convergence of nuclear magnetic shieldings in the Kohn-Sham limit for several small mol- ecules, J. Chem. Theor. Comput. 6 (2010) 1580e1589. open in new tab
  57. D. Feller, K.A. Peterson, D.A. Dixon, A survey of factors contributing to ac- curate prediction of atomization energies and molecular structures, J. Chem. Phys. 129 (2008), 204105e1-204105-32. open in new tab
  58. E. Günde ger, C. Selçuki, B. Okutucu, Modeling prepolymerization step of a serotonin imprinted polymer, J. Mol. Model 22 (2016) 148. https://doi.org/ 10.1007/s00894-016-3018-9. open in new tab
  59. F. Meier, B. Schott, D. Riedel, B. Mizaikoff, Computational and experimental study on the influence of the porogen on the selectivity of 4-nitrophenol molecularly imprinted polymers, Anal. Chim. Acta 744 (2012) 68e74. open in new tab
  60. R.M. El Nashar, N.T. Abdel Ghani, N.A. El Gohary, A. Barhoumc, A. Madbouly, Molecularly imprinted polymers based biomimetic sensors for mosapride citrate detection in biological fluids, Mater. Sci. Eng. C 76 (2017) 123e129. open in new tab
  61. F. Ahmadi, J. Ahmadi, M. Rahimi-Nasrabadi, Computational approaches to design a molecular imprinted polymer for high selective extraction of 3,4- methylenedioxymethamphetamine from plasma, J. Chromatogr. A 1218 (2011) 7739e7747. open in new tab
  62. S.F. Boys, F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors, Mol. Phys. 19 (1970) 553e566. open in new tab
  63. D. Feller, Application of systematic sequences of wave functions to the water dimer, J. Chem. Phys. 96 (1992) 6104e6114. open in new tab
  64. N. Mukawa, T. Goto, H. Nariai, Y. Aoki, A. Imamura, T. Takeuchi, Novel strategy for molecular imprinting of pheno-lic compounds utilizing disulfide templates, J. Pharm. Biomed. Anal. 30 (2003) 1943e1947. open in new tab
  65. M.B. Gholivand, M. Khodadadian, F. Ahmadi, Computer aided-molecular design and synthesis of a high selective molecularly imprinted polymer for solid-phase extraction of furosemide from human plasma, Anal. Chim. Acta 658 (2010) 225e232. open in new tab
  66. C.J. Cramer, Essentials of Computational Chemistry: Theories and Models, second ed., John Wiley & Sons, Chigchester, England, 2004.
  67. M. Tabandeh, S. Ghassamipour, H. Aqababa, M. Tabatabaei, M. Hasheminejad, Computational design and synthesis of molecular imprinted polymers for selective extraction of allopurinol from human plasma, J. Chromatogr. B 898 (2012) 24e31. open in new tab
  68. M. Cossi, V. Barone, R. Cammi, J. Tomasi, Ab initio study of solvated mole- cules: a new implementation of the polarizable continuum model, Chem. Phys. Lett. 255 (1996) 327e335. open in new tab
  69. S. Miertus, E. Scrocco, J. Tomasi, Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects, Chem. Phys. 55 (1981) 117e129. open in new tab
  70. J. Tomasi, B. Mennucci, R. Cammi, Quantum mechanical continuum solvation models, Chem. Rev. 105 (2005) 2999e3093. open in new tab
  71. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheese- man, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P.
  72. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr, J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Bur- ant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, Post-print of: Marć M., Kupka T., Wieczorek P., Namieśnik J.: Computational modeling of molecularly imprinted polymers as a green approach to the development of novel analytical sorbents. TRAC-TRENDS IN ANALYTICAL CHEMISTRY. Vol. 98, (2018), p. 64-78. DOI: 10.1016/j.trac.2017.10.020 open in new tab
  73. R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussian, Inc., Wallingford CT, 2016, http://gaussian.com/citation/. open in new tab
  74. CFOUR, a quantum chemical program package written by J.F. Stanton, J. Gauss, L. Cheng, M.E. Harding, D.A. Matthews, P.G. Szalay with contribu- tions from A.A. Auer, R.J. Bartlett, U. Benedikt, C. Berger, D.E. Bernholdt, Y.J. Bomble, O. Christiansen, F. Engel, R. Faber, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J. Jus elius, K. Klein, W.J. Lauderdale, F. Lipparini, T. Metzroth, L.A. Mück, D.P. O'Neill, D.R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, C. Simmons, S. Stopkowicz, A. Tajti, J. V azquez, F. Wang, J.D. Watts and the integral packages MOLECULE (J. Alml€ of and P.R. Taylor), PROPS (P.R. Taylor), ABACUS (T. Helgaker, H.J. Aa. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van Wüllen, see http://www.cfour.de. open in new tab
  75. K.L. Schuchardt, B.T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, T.L. Windus, Basis set exchange: a community database for computa- tional sciences, J. Chem. Inf. Model 47 (2007) 1045e1052. open in new tab
  76. T. Kupka, A. Buczek, M.A. Broda, R. Szostak, H.-M. Lin, L.-W. Fan, R. Wrzalik, L. Stobi nski, Modeling red coral (Corallium rubrum) and African snail (Helixia aspersa) shell pigments: Raman spectroscopy versus DFT studies, J. Raman Spectrosc. 47 (2016) 908e916. open in new tab
  77. T. Kupka, Complete basis set B3LYP NMR calculations of CDCl3 solvent's water fine spectral details, Magn. Reson. Chem. 46 (2008) 851e858. open in new tab
  78. R.B. Nazarski, P. Wałejko, S. Witkowski, Multi-conformer molecules in solu- tions: an NMR-based DFT/MP2 conformational study of two glucopyrano sides of a vitamin E model compound, Org. Biomol. Chem. 11 (2016) 3142e3158. open in new tab
  79. C. Puzzarini, Extrapolation to the complete basis set limit of the structural parameters. Comparison of different approaches, J. Phys. Chem. A 113 (2009) 14530e14535. open in new tab
  80. A. Hinchliffe, Molecular Modeling for Beginners, John Wiley & Sons Ltd, England, 2003. open in new tab
  81. B.J. Teppen, HyperChem, release 2: molecular modeling for the personal computer, J. Chem. Inf. Comput. Sci. 32 (1992) 757e759. open in new tab
  82. R. Dennington, T.A. Keith, J.M. Millam, GaussView, Semichem Inc., Shawnee Mission, KS, 2016, Version 6. Version 6.
  83. Dassault Syst emes BIOVIA, Discovery Studio Modeling Environment, Release 2017, Dassault Syst emes, San Diego, 2016. open in new tab
  84. H.-J. Werner, P.J. Knowles, G. Knizia, F.R. Manby, M. Schütz, Molpro: a general-purpose quantum chemistry program package, WIREs Comput. Mol. Sci. 2 (2012) 242e253. open in new tab
  85. M.S. Gordon, M.W. Schmidt, Advances in electronic structure theory: GAMESS a decade later, in: C.E. Dykstra, G. Frenking, K.S. Kim, G.E. Scuseria (Editors), Theory and Applications of Computational Chemistry: the First Forty Years, Elsevier, Amsterdam, 2005, pp. 1167e1189.
  86. M.E. Harding, T. Metzroth, J. Gauss, A.A. Auer, Parallel calculation of CCSD and CCSD(T) analytic first and second derivatives, J. Chem. Theor. Comp. 4 (2008) 64e74. open in new tab
  87. K. Aidas, C. Angeli, K.L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E.K. Dalskov, U. Ekstr€ om, T. Enevoldsen, J.J. Eriksen, P. Ettenhuber, B. Fern andez, L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. H€ attig, H. Heiberg, T. Helgaker, A.C. Hennum, H. Hettema, E. Hjertenaes, S. Høst, I.-M. Høyvik, M.F. Iozzi, B. Jansik, H. J. Aa. Jensen, D. Jonsson, P. Jørgensen, J. Kauczor, S. Kirpekar, T. Kjaergaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue, O.B. Lutnaes, J.I. Melo, K.V. Mikkelsen, R.H. Myhre, C. Neiss, C.B. Nielsen, P. Norman, J. Olsen, J.M.H. Olsen, A. Osted, M.J. Packer, F. Pawlowski, T.B. Pedersen, P.F. Provasi, S. Reine, Z. Rinkevicius, T.A. Ruden, K. Ruud, V. Rybkin, P. Salek, C.C.M. Samson, A. S anchez de Mer as, T. Saue, S.P.A. Sauer, B. Schimmelpfennig, K. Sneskov, A.H. Steindal, K.O. Sylvester- Hvid, P.R. Taylor, A.M. Teale, E.I. Tellgren, D.P. Tew, A.J. Thorvaldsen, L. Thøgersen, O. Vahtras, M.A. Watson, D.J.D. Wilson, M. Ziolkowski, H. Ågren, The Dalton quantum chemistry program system, WIREs Comput. Mol. Sci. 4 (2014) 269e284. open in new tab
  88. M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. van Dam, D. Wang, J. Nieplocha, E. Apra, T.L. Windus, W.A. de Jong, NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations, Comput. Phys. Commun. 181 (2010) 1477e1489. open in new tab
  89. G. Schaftenaar, J.H. Noordik, Molden: a pre-and post-processing program for molecular and electronic structures, J. Comput. Aided Mol. Des. 14 (2000) 123e134. open in new tab
  90. M.S. Khan, P.S. Wate, R.J. Krupadam, Combinatorial screening of polymer precursors for preparation of benzo[a] pyrene imprinted polymer: an ab initio computational approach, J. Mol. Model 18 (2012) 1969e1981. open in new tab
  91. T. _ Zołek, P. Luli nski, D. Maciejewska, A computational model for selectivity evaluation of 2-(3,4-dimethoxyphenyl)ethylamine (homoveratrylamine) imprinted polymers towards biogenic compounds, Anal. Chim. Acta 693 (2011) 121e129. open in new tab
  92. K.K. Tadi, R.V. Motghare, Computational and experimental studies on oxalic acid imprinted polymer, J. Chem. Sci. 125 (2013) 413e418. open in new tab
  93. Y. Li, X. Li, Y. Li, C. Dong, P. Jin, J. Qi, Selective recognition of veterinary drugs residues by artificial antibodies designed using a computational approach, Biomaterials 30 (2009) 3205e3211. open in new tab
  94. Ya V. Douhaya, V.V. Barkaline, A. Tsakalof, Computer-simulation-based se- lection of optimal monomer for imprinting of tri-O-acetyl adenosine in a polymer matrix: calculations for benzene solution, J. Mol. Model 22 (2016) 154. https://doi.org/10.1007/s00894-016-3030-0. open in new tab
  95. P. Pog any, M. Razali, G. Szekely, Experimental and theoretical investigation of the complexation of methacrylic acid and diisopropyl urea, Spectrochim. Acta A Mol. Biomol. Spectrosc. 170 (2017) 69e76.
  96. J. Saloni, S.S.R. Dasary, Y. Anjaneyulu, H. Yu, G. Hill Jr., Molecularly imprinted polymers for detection of explosives: computational study on molecular interactions of 2,6-dinitrotoluene and methacrylic acid complex, Struct. Chem. 21 (2010) 1171e1184. open in new tab
  97. Z. Dai, J. Liu, S. Tang, Y. Wang, Y. Wang, R. Jin, Optimization of enrofloxacin- imprinted polymers by computer-aided design, J. Mol. Model 21 (2015) 290. https://doi.org/10.1007/s00894-016-3018-9. open in new tab
  98. E.M. Saad, A. Madbouly, N. Ayoub, R. Mohamed El Nashar, Preparation and application of molecularly imprinted polymer for isolation of chicoric acid from Chicorium intybus L. medicinal plant, Anal. Chim. Acta 877 (2015) 80e89. open in new tab
  99. S.A. Piletsky, K. Karim, E.V. Piletska, C.J. Day, K.W. Freebairn, C. Legge, A.P.F. Turner, Recognition of ephedrine enantiomers by molecularly imprinted polymers designed using a computational approach, Analyst 126 (2001) 1826e1830. open in new tab
  100. H. Zhang, T. Song, F. Zong, T. Chen, C. Pan, Synthesis and characterization of molecularly imprinted polymers for phenoxyacetic acids, Int. J. Mol. Sci. 9 (2008) 98e106. open in new tab
  101. B.B. Prasad, G. Rai, Study on monomer suitability toward the template in molecularly imprinted polymer: an ab initio approach, Spectrochim. Acta A Mol. Biomol. Spectrosc. 88 (2012) 82e89. open in new tab
  102. Q. Zhou, J. He, Y. Tang, Z. Xu, H. Li, C. Kang, J. Jiang, A novel hydroquinidine imprinted microsphere using a chirality-matching N-Acryloyl-l-phenylala- nine monomer for recognition of cinchona alkaloids, J. Chromatogr. A 1238 (2012) 60e67. open in new tab
  103. I. Chianella, K. Karim, E.V. Piletska, C. Preston, S.A. Piletsky, Computational design and synthesis of molecularly imprinted polymers with high binding capacity for pharmaceutical applications-model case: adsorbent for abacavir, Anal. Chim. Acta 559 (2006) 73e78. open in new tab
  104. K. Smolinska-Kempisty, O. Sheej Ahmad, A. Guerreiro, K. Karim, E. Piletska, S. Piletsky, New potentiometric sensor based on molecularly imprinted nanoparticles for cocaine detection, Biosens. Bioelectron. 96 (2017) 49e54. open in new tab
  105. D. Capoferria, M. Del Carloa, N. Ntshongontshib, E.I. Iwuohab, M. Sergia, F. Di Ottavioa, D. Compagnonea, MIP-MEPS based sensing strategy for the selec- tive assay of dimethoate. Application to wheat flour samples, Talanta 174 (2017) 599e604. open in new tab
  106. M. Zhang, H.T. Zhao, T.J. Xie, X. Yang, A.J. Dong, H. Zhang, J. Wang, Z.Y. Wang, Molecularly imprinted polymer on graphene surface for selective and sen- sitive electrochemical sensing imidacloprid, Sens. Actuator B-Chem. 252 (2017) 991e1002. open in new tab
  107. M.M. Pedroso, M.V. Foguel, D.H.S. Silva, M. del Pilar Taboada Sotomayor, H. Yamanaka, Electrochemical sensor for dodecyl gallate determination based on electropolymerized molecularly imprinted polymer, Sens. Actuator B-Chem. 253 (2017) 180e186. open in new tab
  108. L. Zhang, G. Wang, D. Wu, C. Xiong, L. Zheng, Y. Ding, H. Lu, G. Zhang, L. Qiu, Highly selective and sensitive sensor based on an organic electrochemical transistor for the detection of ascorbic acid, Biosens. Bioelectron. 100 (2018) 235e241. open in new tab
  109. R. Gui, H. Jin, H. Guo, Z. Wang, Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors, Biosens. Bioelectron. 100 (2018) 56e70. open in new tab
  110. S. Ansari, Combination of molecularly imprinted polymers and carbon nanomaterials as a versatile biosensing tool in sample analysis: recent ap- plications and challenges, Trends Anal. Chem. 93 (2017) 134e151. open in new tab
  111. M.P. Tiwari, A. Prasad, Molecularly imprinted polymer based enantiose- lective sensing devices: a review, Anal. Chim. Acta 853 (2015) 1e18. open in new tab
  112. H. Li, H. He, J. Huang, C.Z. Wang, X. Gu, Y. Gao, H. Zhang, S. Du, L. Chen, C.S. Yuan, A novel molecularly imprinted method with computational simulation for the affinity isolation and knockout of baicalein from Scutel- laria baicalensis, Biomed. Chromatogr. 30 (2016) 117e125. open in new tab
  113. P. Luli nski, M. Sobiech, T. _ Zołek, D. Maciejewska, A separation of tyr- amineona2-(4-methoxyphenyl)ethylamine imprinted polymer: an answer from theoretical and experimental studies, Talanta 129 (2014) 155e164. open in new tab
  114. M. Niu, C. Sun, K. Zhang, G. Li, F. Meriem, C. Pham-Huy, X. Hui, J. Shi, H. He, A simple extraction method for norfloxacin from pharmaceutical waste- water with a magnetic coreeshell molecularly imprinted polymer with the aid of computer simulation, New J. Chem. 41 (2017) 2614e2624. open in new tab
  115. M. Sobiech, T. _ Zołek, P. Luli nski, D. Maciejewska, A computational explora- tion of imprinted polymer affinity based on voriconazole metabolites, Ana- lyst 139 (2014) 1779e1788. open in new tab
  116. I. Bakas, N.B. Oujji, E. Moczko, G. Istamboulie, S. Piletsky, E. Piletska, E. Ait- Addi, I. Ait-Ichou, T. Noguer, R. Rouillon, Computational and experimental investigation of molecular imprinted polymers for selective extraction of dimethoate and its metabolite omethoate from olive oil, J. Chromatogr. A 1274 (2013) 13e18. open in new tab
  117. F. Ahmadi, E. Yawari, M. Nikbakht, Computational design of an enantiose- lective molecular imprinted polymer for the solid phase extraction of S- warfarin from plasma, J. Chromatogr. A 1338 (2014) 9e16. open in new tab
  118. F. Ahmadi, H. Rezaei, R. Tahvilian, Computational-aided design of molecu- larly imprinted polymer for selective extraction of methadone from plasma and saliva and determination by gas chromatography, J. Chromatogr. A 1270 (2012) 9e19. open in new tab
  119. Post-print of: Marć M., Kupka T., Wieczorek P., Namieśnik J.: Computational modeling of molecularly imprinted polymers as a green approach to the development of novel analytical sorbents. TRAC-TRENDS IN ANALYTICAL CHEMISTRY. Vol. 98, (2018), p. 64-78. DOI: 10.1016/j.trac.2017.10.020 open in new tab
  120. M. Sobiech, T. _ Zołek, P. Luli nski, D. Maciejewska, Separation of octopamine racemate on (R,S)-2-amino-1-phenylethanol imprinted polymer e experi- mental and computational studies, Talanta 146 (2016) 556e567. open in new tab
  121. N. Martins, E.P. Carreiro, A. Locati, J.P. Prates Ramalho, M.J. Cabrita, A.J. Burke, R. Garcia, Design and development of molecularly imprinted polymers for the selective extraction of deltamethrin in olive oil: an integrated computational-assisted approach, J. Chromatogr. A 1409 (2015) 1e10. open in new tab
  122. R. Rodríguez-Dorado, A.M. Carro, I. Chianella, K. Karim, A. Concheiro, R.A. Lorenzo, S. Piletsky, C. Alvarez-Lorenzo, Oxytetracycline recovery from aqueous media using computationally designed molecularly imprinted polymers, Anal. Bioanal. Chem. 408 (2016) 6845e6856. open in new tab
  123. I. Basozabal, A. Gomez-Caballero, G. Diaz-Diaz, A. Guerreiro, S. Gilby, M. Aranzazu Goicolea, R.J. Barrio, Rational design and chromatographic evaluation of histamine imprinted polymers optimised for solid-phase extraction of wine samples, J. Chromatogr. A 1308 (2013) 45e51. open in new tab
  124. E.V. Piletska, K. Karim, M. Cutler, S.A. Piletsky, Development of the protocol for purification of artemisinin based on combination of commercial and computationally designed adsorbents, J. Sep. Sci. 36 (2013) 400e406. open in new tab
  125. I. Bakas, N.B. Oujji, G. Istambouli e, S. Piletsky, E. Piletska, E. Ait-Addi, I. Ait- Ichou, T. Noguer, R. Rouillon, Molecularly imprinted polymer cartridges coupled to high performance liquid chromatography (HPLC-UV) for sim- ple and rapid analysis of fenthion in olive oil, Talanta 125 (2014) 313e318. open in new tab
  126. I. Tsyrulneva, O. Zaporozhets, E. Piletska, S. Piletsky, Molecular modelling and synthesis of a polymer for the extraction of amiloride and triamterene from human urine, Anal. Methods 6 (2014) 3429e3435. open in new tab
  127. M.B. Gholivand, M. Khodadadian, Rationally designed molecularly imprinted polymers for selective extraction of methocarbamol from human plasma, Talanta 85 (2011) 1680e1688. open in new tab
  128. A.A. Ameri, H.R. Pourghasemi, A. Cerda, Erodibility prioritization of sub- watersheds using morphometric parameters analysis and its mapping: a comparison among TOPSIS, VIKOR, SAW, and CF multi-criteria decision making models, Sci. Total Environ. 613e614 (2018) 1385e1400. open in new tab
  129. Post-print of: Marć M., Kupka T., Wieczorek P., Namieśnik J.: Computational modeling of molecularly imprinted polymers as a green approach to the development of novel analytical sorbents. TRAC-TRENDS IN ANALYTICAL CHEMISTRY. Vol. 98, (2018), p. 64-78. DOI: 10.1016/j.trac.2017.10.020 open in new tab
Verified by:
Gdańsk University of Technology

seen 221 times

Recommended for you

Meta Tags