Continuum wave functions for estimating the electric dipole moment: Calculation based on a multiconfiguration Dirac-Hartree-Fock approximation - Publication - Bridge of Knowledge

Search

Continuum wave functions for estimating the electric dipole moment: Calculation based on a multiconfiguration Dirac-Hartree-Fock approximation

Abstract

The multiconfiguration Dirac-Hartree-Fock method is employed to calculate the continuum electron wave functions, which are then used to estimate their contribution to the atomic electric dipole moment (EDM) of 129Xe. The EDM arises from (P,T)-odd electron-nucleon tensor-pseudotensor and pseudoscalar-scalar interactions, the nuclear Schiff moment, the interaction of the electron electric dipole moment with nuclear magnetic moments, and atomic electric dipole matrix elements. In addition to being estimated in the continuum states, all of these interactions are also estimated in the ground state, as well as in the Rydberg states of 129Xe. Calculations of one-electron atomic orbitals include the interelectronic interactions, through valence and core-valence electron correlation effects. The contribution to the EDM from continuum states is found to be of the same order of magnitude as the contribution from discrete states.

Citations

  • 1

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Authors (6)

Cite as

Full text

download paper
downloaded 169 times
Publication version
Accepted or Published Version
License
Copyright (2019 American Physical Society)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
PHYSICAL REVIEW A no. 99, pages 1 - 7,
ISSN: 2469-9926
Language:
English
Publication year:
2019
Bibliographic description:
Syty P., Sienkiewicz J., Radžiūtė L., Gaigalas G., Rynkun P., Bieroń J.: Continuum wave functions for estimating the electric dipole moment: Calculation based on a multiconfiguration Dirac-Hartree-Fock approximation// PHYSICAL REVIEW A. -Vol. 99, (2019), s.1-7
DOI:
Digital Object Identifier (open in new tab) 10.1103/physreva.99.012514
Bibliography: test
  1. I. B. Khriplovich and S. K. Lamoreaux, CP Violation Without Strangeness (Springer, Berlin, 1997). open in new tab
  2. K. Jungmann, Ann. Phys. (Berlin) 525, 550 (2013). open in new tab
  3. V. A. Dzuba, V. V. Flambaum, and C. Harabati, Phys. Rev. A 84, 052108 (2011). open in new tab
  4. Y. Singh and B. K. Sahoo, Phys. Rev. A 91, 030501 (2015). open in new tab
  5. T. Chupp and M. Ramsey-Musolf, Phys. Rev. C 91, 035502 (2015). open in new tab
  6. T. Inouea, T. Furukawaa, T. Nanaoa, A. Yoshimib, K. Suzukia, M. Chikamoria, M. Tsuchiyaa, H. Hayashia, M. Uchidaa, and K. Asahia, Phys. Proc. 17, 100 (2011). open in new tab
  7. T. Furukawa, T. Inoue, T. Nanao, A. Yoshimi, M. Tsuchiya, H. Hayashi, M. Uchida, and K. Asahi, J. Phys.: Conf. Ser. 312, 102005 (2011). open in new tab
  8. F. Kuchler et al., Hyperfine Interact. 237, 95 (2016). open in new tab
  9. M. A. Rosenberry and T. E. Chupp, Phys. Rev. Lett. 86, 22 (2001). open in new tab
  10. V. A. Dzuba, V. V. Flambaum, and S. G. Porsev, Phys. Rev. A 80, 032120 (2009). open in new tab
  11. Y. Singh, B. K. Sahoo, and B. P. Das, Phys. Rev. A 89, 030502(R) (2014). open in new tab
  12. K. V. P. Latha and P. R. Amjith, Phys. Rev. A 87, 022509 (2013). open in new tab
  13. S. G. Porsev, M. S. Safronova, and M. G. Kozlov, Phys. Rev. Lett. 108, 173001 (2012). open in new tab
  14. V. G. Gorshkov, V. F. Ezhov, M. G. Kozlov, and A. I. Mikhailov, Sov. J. Nucl. Phys. 48, 867 (1988).
  15. P. Jönsson, G. Gaigalas, J. Bieroń, C. Froese Fischer, and I. Grant, Comput. Phys. Commun. 184, 2197 (2013). open in new tab
  16. P. Syty and S. Fritzsche (private communication).
  17. S. Fritzsche, Comput. Phys. Commun. 183, 1525 (2012). open in new tab
  18. L. Radžiūtė, G. Gaigalas, P. Jönsson, and J. Bieroń, Phys. Rev. A 90, 012528 (2014). open in new tab
  19. G. Gaigalas, T. Zalandauskas, and Z. Rudzikas, At. Data Nucl. Data Tables 84, 99 (2003). open in new tab
  20. G. Gaigalas, T. Zalandauskas, and S. Fritzsche, Comput. Phys. Commun. 157, 239 (2004). open in new tab
  21. H. Saha, Phys. Rev. A 43, 4712 (1991). open in new tab
  22. I. P. Grant, B. J. McKenzie, P. H. Norrington, D. F. Mayers, and N. Pyper, Comput. Phys. Commun. 21, 207 (1980). open in new tab
  23. P. Syty, J. E. Sienkiewicz, and S. Fritzsche, Rad. Phys. Chem. 68, 301 (2003). open in new tab
  24. P. Burke, A. Hibbert, and W. Robb, J. Phys. B 4, 153 (1971). open in new tab
  25. R. D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Oakland, 1981), pp. 522-524.
  26. K. G. Dyall, I. P. Grant, C. T. Johnson, F. A. Parpia, and E. P. Plummer, Comput. Phys. Commun. 55, 425 (1989). open in new tab
  27. J. Bieroń, G. Gaigalas, E. Gaidamauskas, S. Fritzsche, P. Indelicato, and P. Jönsson, Phys. Rev. A 80, 012513 (2009). open in new tab
  28. A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team, NIST atomic spectra database, version 5.5.6, available at https://physics.nist.gov/asd (National Institute of Standards and Technology, Gaithersburg, 2018). open in new tab
  29. A.-M. Mårtensson-Pendrill, Phys. Rev. Lett. 54, 1153 (1985). open in new tab
  30. V. A. Dzuba, V. V. Flambaum, and P. G. Silvestrov, Phys. Lett. 154B, 93 (1985). open in new tab
  31. V. A. Dzuba, V. V. Flambaum, J. S. M. Ginges, and M. G. Kozlov, Phys. Rev. A 66, 012111 (2002). open in new tab
  32. A.-M. Mårtensson-Pendrill and P. Öster, Phys. Scr. 36, 444 (1987). open in new tab
  33. J. Bieroń, C. Froese Fischer, P. Jönsson, and P. Pyykkö, J. Phys. B 41, 115002 (2008). open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 185 times

Recommended for you

Meta Tags