Cost-Efficient Measurement Platform and Machine-Learning-Based Sensor Calibration for Precise NO2 Pollution Monitoring - Publication - Bridge of Knowledge

Search

Cost-Efficient Measurement Platform and Machine-Learning-Based Sensor Calibration for Precise NO2 Pollution Monitoring

Abstract

Air quality significantly impacts human health, the environment, and the economy. Precise real-time monitoring of air pollution is crucial for managing associated risks and developing appropriate short- and long-term measures. Nitrogen dioxide (NO2) stands as a common pollutant, with elevated levels posing risks to the human respiratory tract, exacerbating respiratory infections and asthma, and potentially leading to chronic lung diseases. Notwithstanding, precise NO2 detection typically demands complex and costly equipment. This paper explores NO2 monitoring using low-cost platforms, meticulously calibrated for reliability. An integrated measurement unit is first presented that contains primary and supplementary nitrogen dioxide sensors, as well as auxiliary detectors for evaluating outside and inside temperature and humidity. The calibration process utilizes data acquired over the period of five months from various reference stations. Employing machine learning with an artificial neural network (ANN)-based and kriging interpolation surrogate models, the correction strategy integrates additive and multiplicative enhancement, predicted by the ANN through auxiliary sensor data such as temperature, humidity, and the sensor-detected NO2 levels. Extensive verification studies showcase that this calibration approach notably enhances monitoring precision (r2 correlation coefficient surpassing 0.85 concerning reference data, and RMSE of less than four g/m3), rendering low-cost NO2 detection practical and dependable.

Citations

  • 2

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Cite as

Full text

full text is not available in portal

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
MEASUREMENT no. 237,
ISSN: 0263-2241
Language:
English
Publication year:
2024
Bibliographic description:
Pietrenko-Dąbrowska A., Kozieł S., Wójcikowski M., Pankiewicz B., Rydosz A., Cao T., Wojtkiewicz K.: Cost-Efficient Measurement Platform and Machine-Learning-Based Sensor Calibration for Precise NO2 Pollution Monitoring// MEASUREMENT -Vol. 237, (2024), s.1-21
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.measurement.2024.115168
Sources of funding:
  • Free publication
Verified by:
Gdańsk University of Technology

seen 53 times

Recommended for you

Meta Tags