Abstract
The following paper presents the results of the theoretical and experimental analysis of the influence of debonding size on guided wave propagation in reinforced concrete beams. The main aim of the paper is a development of a novel, baseline-free method for determining the total area of debonding between steel rebar embedded in a concrete cover on the basis of the average wave velocity or the time of flight. The correctness of the developed relationships was verified during the experimental tests, which included propagation of guided waves in concrete beams with the varying debonding size, shape and location. The analysis of the collected results proved that guided waves can be efficiently used not only in the debonding detection, but also in an exact determining of its total area, which is extremely important in the context of the nondestructive assessment of the load capacity of the reinforced concrete structures. The undeniable advantage of the proposed method is that there are no requirements for any baseline signals collected for an undamaged structure. The paper comprises of the detailed step by step algorithm description and a discussion of both the advantages and disadvantages.
Citations
-
1 2
CrossRef
-
0
Web of Science
-
1 5
Scopus
Authors (2)
Cite as
Full text
- Publication version
- Accepted or Published Version
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
SENSORS
no. 20,
pages 1 - 18,
ISSN: 1424-8220 - Language:
- English
- Publication year:
- 2020
- Bibliographic description:
- Zima B., Kędra R.: Debonding Size Estimation in Reinforced Concrete Beams Using Guided Wave-Based Method// SENSORS -Vol. 20,iss. 2 (2020), s.1-18
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/s20020389
- Verified by:
- Gdańsk University of Technology
seen 245 times