Determination and identification of organic acids in wine samples. Problems and challenges. - Publication - Bridge of Knowledge

Search

Determination and identification of organic acids in wine samples. Problems and challenges.

Abstract

For long time, organic acids were underestimated. However, during last two decades there is an increasing interest of natural compounds having antioxidant, antimicrobial and anti-inflammatory properties thus organic acids are very preferable. Wine stands as one of the sources of organic acids since they are responsible for its organoleptic and aestethic character. Nevertheless, it is important to not exceed acceptable level of acidity at particular stage of vinification process. Therefore its determination and quantification is of high importance. Given study gathers data regarding current knowledge with respect to organic acids, focusing on their occurrence in different types of food including wines, their properties and effects on the human body, potential correlations between organic acids and other components of wine. Moreover, the comparison of analytical techniques used for the organic acids determination and challenges, considering their process and green assessment is provided.

Citations

  • 7 6

    CrossRef

  • 0

    Web of Science

  • 8 4

    Scopus

Cite as

Full text

download paper
downloaded 1158 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
TRAC-TRENDS IN ANALYTICAL CHEMISTRY no. 120,
ISSN: 0165-9936
Language:
English
Publication year:
2019
Bibliographic description:
Robles A., Fabjanowicz M., Chmiel T., Płotka-Wasylka J.: Determination and identification of organic acids in wine samples. Problems and challenges.// TRAC-TRENDS IN ANALYTICAL CHEMISTRY. -Vol. 120, (2019), s.115630-
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.trac.2019.115630
Bibliography: test
  1. F. Shahidi, Y. Zhong, and A. Chandrasekara, -Antioxidants and human health,‖ in Cereals and 669 Pulses: Nutraceutical Properties and Health Benefits -Chapter 19, 2012, pp. 273-308. open in new tab
  2. X. Tang et al., -The Cardioprotective Effects of Citric Acid and L-Malic Acid on Myocardial 671 open in new tab
  3. Ischemia / Reperfusion Injury,‖ Evidence-Based Complement. Altern. Med., pp. 1-11, 2013. 672 open in new tab
  4. K. Iqbal, A. Khan, M. M. Ali, and K. Khattak, -Biological Significance of Ascorbic Acid ( 673
  5. Vitamin C ) in Human Health -A Review,‖ Pakistan J. Nutr., vol. 3, no. 1, pp. 5-13, 2004. 674 open in new tab
  6. S. Shahrzad, K. Aoyagi, A. Winter, A. Koyama, and I. Bitsch, -Pharmacokinetics of Gallic Acid 675 and Its Relative Bioavailability from Tea in Healthy Humans,‖ Hum. Nutr. Metab., vol. 1, pp. 676 1207-1210, 2001. open in new tab
  7. J. D. Bortz and M. I. Kirschner, -Patent Application Publication Pub . No .: US 2016 / 0022631 open in new tab
  8. A1 Methods and Compositions for Enhancing Iron Absorption,‖ 2016. open in new tab
  9. R. Nagai, M. Nagai, S. Shimasaki, J. W. Baynes, and Y. Fujiwara, -Biochemical and Biophysical 680 open in new tab
  10. Research Communications Citric acid inhibits development of cataracts , proteinuria and ketosis 681 in streptozotocin ( type 1 ) diabetic rats,‖ Biochem. Biophys. Res. Commun., vol. 393, no. 1, pp. 682 118-122, 2010. open in new tab
  11. Y. Marunaka, -The Proposal of Molecular Mechanisms of Weak Organic Acids Intake-Induced 684 open in new tab
  12. Improvement of Insulin Resistance in Diabetes Mellitus via Elevation of Interstitial Fluid pH,‖ 685 Int. J. Mol. Sci., vol. 19, pp. 3244-3267, 2018. open in new tab
  13. B. Jurado-Sánchez, E. Ballesteros, and M. Gallego, -Gas chromatographic determination of 29 687 organic acids in foodstuffs after continuous solid-phase extraction,‖ Talanta, vol. 84, no. 3, pp. 688 924-930, 2011. open in new tab
  14. P. Sandín-España, M. Mateo-Miranda, C. López-Goti, A. De Cal, and J. L. Alonso-Prados, open in new tab
  15. R. Scherer, A. C. Poloni Rybka, C. A. Ballus, A. Dillenburg Meinhart, J. Teixeira Filho, and H.
  16. Teixeira Godoy, -Validation of a HPLC method for simultaneous determination of main organic 694 acids in fruits and juices,‖ Food Chem., vol. 135, pp. 150-154, 2012.
  17. V. Usenik, J. Fabcic, and F. Stampar, -Food Chemistry Sugars , organic acids , phenolic 696 composition and antioxidant activity of sweet cherry ( Prunus avium L .),‖ Food Chem., vol. 107, 697 pp. 185-192, 2008. open in new tab
  18. P. Muñoz-Robredo, P. Robledo, D. Manriquez, R. Molina, and B. G. Defilippi, -Characterization 699 of sugars and organic acids in commercial varieties of table grapes,‖ Chil. J. Agric. Res., vol. 71, 700 no. 3, pp. 452-458, 2011. open in new tab
  19. P. Valentao et al., -Quantitation of Nine Organic Acids in Wild Mushrooms,‖ J. Agric. Food 702 Chem., vol. 53, pp. 3626-3630, 2005. open in new tab
  20. H. Kelebek, S. Selli, A. Canbas, and T. Cabaroglu, -HPLC determination of organic acids , 704 sugars , phenolic compositions and antioxidant capacity of orange juice and orange wine made 705 from a Turkish cv . Kozan,‖ Microchem. J., vol. 91, no. 2, pp. 187-192, 2009. open in new tab
  21. V. Galli and C. Barbas, -Capillary electrophoresis for the analysis of short-chain organic acids in 707 coffee,‖ J. Chromatogr. A, vol. 1032, pp. 299-304, 2004. open in new tab
  22. A. V. S. Perumalla and N. S. Hettiarachchy, -Green tea and grape seed extracts -Potential 709 applications in food safety and quality,‖ FRIN, vol. 44, no. 4, pp. 827-839, 2011. 710 [17] open in new tab
  23. E. Monteiro Coelho et al., -Simultaneous analysis of sugars and organic acids in wine and grape 711 juices by HPLC : Method validation and characterization of products from northeast Brazil,‖ J.
  24. Food Compos. Anal., vol. 66, no. December 2017, pp. 160-167, 2018. open in new tab
  25. S. Rovio, K. Sirén, and H. Sirén, -Application of capillary electrophoresis to determine metal 714 open in new tab
  26. cations, anions, organic acids, and carbohydrates in some Pinot Noir red wines,‖ Food Chem., 715 vol. 124, no. 3, pp. 1194-1200, 2011. open in new tab
  27. O. Kritsunankul, B. Pramote, and J. Jakmunee, -Flow injection on-line dialysis coupled to high 717 performance liquid chromatography for the determination of some organic acids in wine,‖ 718 Talanta, vol. 79, pp. 1042-1049, 2009. open in new tab
  28. S. Ohira et al., -On-line electrodialytic matrix isolation for chromatographic determination of 720 organic acids in wine,‖ J. Chromatogr. A, vol. 1372, pp. 18-24, 2014. open in new tab
  29. H. Nakamura, K. Watanabe, and J. Mizutani, -Taste substances in foods, 5: Organic acids in 722 vegetable and Sansai,‖ J. Agric. Chem. Soc. Japan, vol. 49, pp. 665-666, 1975. 723 [22] open in new tab
  30. F. Drawert, P. Schreier, G. Leupold, Z. Kerényi, V. Lessing, and A. Junker, -GLC-Mass- 724 open in new tab
  31. Spectrometrical Investigation of the Volatile Components of Wines VII. Aroma Compounds 725 open in new tab
  32. ofTokaj Aszu Wines b) Organic Acids,‖ Z. Lebensm. Unters. Forsch., vol. 162, pp. 11-20, 1976. 726 [23] open in new tab
  33. J. Shimizu, M. Shimizu, and Y. Watanabe, -Relationship between some minerals and organic 727 acids in table wine.,‖ J. Agric. Chem. Soc. Japan, vol. 53, pp. 209-209, 1979. 728 [24] open in new tab
  34. Y. Shimazu and M. Watanabe, -Effects of Yeast Strains and Environmental Conditions on 729 Formation of Organic Acids in Must during Fermentation,‖ J. Ferment. Technol., vol. 59, no. 1, 730 pp. 27-32, 1981.
  35. H. Ukeda, N. Yamamoto, M. Sawamura, and H. Kusunose, -Microbial Sensor for Estimating 732 open in new tab
  36. Organic Acids in Wine,‖ Anal. Sci., vol. 11, pp. 941-945, 1995. open in new tab
  37. E. López-Tamames, M. A. Puig-Deu, E. Teixeira, and S. Buxaderas, -Organic Acids, Sugars, and 734
  38. Glycerol Content in White Winemaking Products Determined by HPLC: Relationship to Climate 735 and Varietal Factors,‖ Am. J. Enol. Vitic., vol. 47, pp. 193-198, 1996. open in new tab
  39. M. Daglia, A. Papetti, P. Grisoli, C. Aceti, C. Dacarr, and G. Gazzani, -Antibacterial Activity of 737 open in new tab
  40. Red and White Wine against Oral Streptococci,‖ J. Agric. Food Chem., vol. 55, pp. 5038-5042, 738 2007. open in new tab
  41. S. Sanli, N. Sanli, S. A. Ozkan, and C. Lunte, -Development and Validation of a Green Capillary open in new tab
  42. H. N. Nelson, K. L. Rush, and T. Wilson, -Chapter 22. Functions of Common Beverage 743 open in new tab
  43. Ingredients,‖ in T.Wilson, N.J. Temple (eds.) Beverage Impacts on Health and Nutrition, 744 Nutrition and Health, 2016, pp. 317-329. 745 [30] -https://pubchem.ncbi.nlm.nih.gov/.‖ . open in new tab
  44. N. Boban et al., -Antimicrobial Effects of Wine : Separating the Role of Polyphenols , pH , 747 open in new tab
  45. Ethanol , and Other Wine Components,‖ J. Food Sci., vol. 75, no. 5, pp. 322-326, 2010. 748 [32]
  46. B. M. Silva, P. Andrade, F. Ferreres, S. National, and M. Oliveira, -Composition of Quince ( 749 open in new tab
  47. Cydonia oblonga Miller ) seeds : phenolics , organic acids and free amino acids,‖ Nat. Prod. Res., 750 vol. 19, no. 3, pp. 275-281, 2005. open in new tab
  48. Y. Soyer, N. Koca, and F. Karadeniz, -Organic acid profile of Turkish white grapes and grape 752 juices,‖ J. Food Compos. Anal., vol. 16, pp. 629-636, 2003. open in new tab
  49. M. Mikulic-Petkovsek, V. Schmitzer, A. Slatnar, F. Stampar, and R. Veberic, -Composition of 754 open in new tab
  50. Sugars , Organic Acids , and Total Phenolics in 25 Wild or Cultivated Berry Species,‖ J. Food 755 Sci., vol. 77, no. 10, pp. 1064-1070, 2012.
  51. R. Veberic, J. Jakopic, F. Stampar, and V. Schmitzer, -European elderberry ( Sambucus nigra L .) 757 rich in sugars , organic acids , anthocyanins and selected polyphenols,‖ Food Chem., vol. 114, no. 758 2, pp. 511-515, 2009. open in new tab
  52. A. Castiñeira, R. M. Peña, C. Herrero, and S. García-Martín, -Analysis of Organic Acids in Wine 760 by Capillary Electrophoresis with Direct UV Detection,‖ J. Food Compos. Anal., vol. 15, pp. 761 319-331, 2002. open in new tab
  53. I. Mato, S. Suarez-Luque, and J. F. Huidoro, -Food Chemistry Simple determination of main 763 organic acids in grape juice and wine by using capillary zone electrophoresis with direct UV 764 detection,‖ Food Chem., vol. 102, pp. 104-112, 2007. open in new tab
  54. R. G. Peres, E. P. Moraes, G. A. Micke, F. G. Tonin, M. F. M. Tavares, and D. B. Rodriguez- 766 open in new tab
  55. amaya, -Rapid method for the determination of organic acids in wine by capillary electrophoresis 767 with indirect UV detection,‖ Food Control, vol. 20, no. 6, pp. 548-552, 2009. open in new tab
  56. J. Zeravik et al., -Various instrumental approaches for determination of organic acids in wines,‖ 769 Food Chem., vol. 194, pp. 432-440, 2016. open in new tab
  57. B. Badhani, N. Sharma, and R. Kakkar, -Gallic acid: a versatile antioxidant with promising 771 therapeutic and industrial applications,‖ RSC Adv., vol. 5, pp. 27540-27557, 2015. 772 [41] open in new tab
  58. A. Carneiro, J. A. Couto, C. Mena, J. Queiroz, and T. Hogg, -Activity of wine against 773 open in new tab
  59. Campylobacter jejuni,‖ Food Control, vol. 19, pp. 800-805, 2008.
  60. A. Ferrandino, A. Carlomagno, S. Baldassarre, and A. Schubert, -Varietal and pre-fermentative 775 volatiles during ripening of Vitis vinifera cv Nebbiolo berries from three growing areas,‖ Food 776 open in new tab
  61. Chem., vol. 135, no. 4, pp. 2340-2349, 2012. open in new tab
  62. J. Gonçalves, C. L. Silva, P. C. Castilho, and J. S. Câmara, -An attractive , sensitive and high- 778 throughput strategy based on microextraction by packed sorbent followed by UHPLC-PDA 779 analysis for quanti fi cation of hydroxybenzoic and hydroxycinnamic acids in wines,‖ 780 Microchem. J., vol. 106, pp. 129-138, 2013. open in new tab
  63. H. Volschenk, H. J. J. van Vuuren, and M. Viljoen-Blomm, -Malic Acid in Wine : Origin , 782 open in new tab
  64. Function and Metabolism during Vinification,‖ South African J. Enol. Vitic., vol. 27, no. 2, pp. 783 123-136, 2006. open in new tab
  65. S. Vázquez, S. Río Segade, and I. Orriols Fernández, -Effect of the winemaking technique on 785 phenolic composition and chromatic characteristics in young red wines,‖ Eur. Food Res.
  66. Technol., vol. 231, pp. 789-802, 2010. open in new tab
  67. A. Coletta et al., -Original article Influence of viticultural practices and winemaking technologies 788 on phenolic composition and sensory characteristics of Negroamaro red wines,‖ pp. 1-13, 2013. 789 [47] open in new tab
  68. A. Baiano et al., -Effects of different vinification technologies on physical and chemical 790 characteristics of Sauvignon blanc wines,‖ Foof Chem., vol. 135, no. 4, pp. 2694-2701, 2012. open in new tab
  69. P. Mena, A. Gironés-Vilaplana, N. Martí, and C. García-Viguera, -Pomegranate varietal wines : Phytochemical composition and quality parameters,‖ Food Chem., vol. 133, no. 1, pp. 108-115, 793 2012. open in new tab
  70. S. Sartor et al., -Changes in organic acids, polyphenolic and elemental composition of rosé 795 sparkling wines treated with mannoproteins during over-lees aging,‖ Food Res. Int., 2018. 796 [50] open in new tab
  71. B. S. Chidi, D. Rossouw, A. S. Buica, and F. F. Bauer, -Determining the Impact of Industrial 797 open in new tab
  72. Wine Yeast Strains on Organic Acid Production Under White and Red Wine-like Fermentation 798 open in new tab
  73. Conditions,‖ South African J. Enol. Vitic., vol. 36, no. 3, pp. 316-328, 2015.
  74. M. J. Torija et al., -Effect of Organic Acids and Nitrogen Source on Alcoholic Fermentation : 800 Study of Their Buffering Capacity,‖ J. Agric. Food Chem., vol. 51, pp. 916-922, 2003. 801 [52] open in new tab
  75. R. M. De Orduña, -Climate change associated effects on grape and wine quality and production,‖ 802 Food Res. Int., vol. 43, pp. 1844-1855, 2010.
  76. K. Ali, F. Maltese, R. Toepfer, Y. Hae Choi, and R. Verpoorte, -Metabolic characterization of 804 open in new tab
  77. Palatinate German white wines according to sensory attributes , varieties , and vintages using 805 NMR spectroscopy and multivariate data analyses,‖ J. Biomol. NMR, vol. 49, pp. 255-266, 2011. 806 [54] open in new tab
  78. Z. Kerem, B. Bravdo, O. Shoseyov, and Y. Tugendhaft, -Rapid liquid chromatography - 807 ultraviolet determination of organic acids and phenolic compounds in red wine and must,‖ J. open in new tab
  79. Chromatogr. Sci., vol. 1052, pp. 211-215, 2004. open in new tab
  80. E. H. Soufleros, E. Bouloumpasi, A. Zotou, and Z. Loukou, -Determination of biogenic amines in 810 open in new tab
  81. Greek wines by HPLC and ultraviolet detection after dansylation and examination of factors 811 affecting their presence and concentration,‖ Food Chem., vol. 101, pp. 704-716, 2007. 812 open in new tab
  82. M. Papageorgiou, D. Lambropoulou, C. Morrison, E. Klodzinska, J. Namiesnik, and J. Plotka- 813 open in new tab
  83. Wasylka, -Literature update of analytical methods for biogenic amines determination in food and 814 beverages,‖ Trends Anal. Chem., vol. 98, pp. 128-142, 2018.
  84. J. M. McRae and J. A. Kennedy, -Wine and Grape Tannin Interactions with Salivary Proteins and 816 open in new tab
  85. Their Impact on Astringency: A Review of Current Research,‖ Molecules, vol. 16, pp. 2348- 817 2364, 2011. open in new tab
  86. R. Gawel, L. Francis, and E. J. Waters, -Statistical Correlations between the In-Mouth Textural 819 open in new tab
  87. Characteristics and the Chemical Composition of Shiraz Wines,‖ J. Agric. Food Chem., vol. 55, 820 pp. 2683-2687, 2007. open in new tab
  88. A. Tredoux, A. de Villiers, P. Majek, F. Lynen, A. Crouch, and P. Sandra, -Stir Bar Sorptive 822 open in new tab
  89. Extraction Combined with GC-MS Analysis and Chemometric Methods for the Classification of 823 open in new tab
  90. South African Wines According to the Volatile Composition.,‖ J Agric Food Chem, vol. 56, no. 824 12, pp. 4286-96, 2008. open in new tab
  91. T. Tarko, A. Duda Hodak, P. Satora, P. Sroka, and I. Gojniczek, -Chemical composition of cool- 826 climate grapes and enological parameters of cool-climate wines,‖ Fruits, vol. 69, no. 1, pp. 75- 827 86, 2014. open in new tab
  92. I. Mato, S. Suárez-Luque, and J. F. Huidobro, -A review of the analytical methods to determine 829 organic acids in grape juices and wines,‖ Food Res. Int., vol. 38, no. 10, pp. 1175-1188, 2005. 830 [62] open in new tab
  93. J. Plotka-Wasylka, M. Rutkowska, K. Owczarek, M. Tobiszewski, and J. Namiesnik, -Extraction 831 with environmentally friendly solvents,‖ Trends Anal. Chem., vol. 91, pp. 12-25, 2017. 832 [63] open in new tab
  94. E. M. Silva, Flamys Lena do Nascimento;
  95. Schmidt, C. L. Messias, M. Nogueira Eberlin, and H. open in new tab
  96. A. C. Sawaya Frankland, -Quantitation of organic acids in wine and grapes by direct infusion 834 electrospray ionization mass spectrometry,‖ Anal. Methods, vol. 7, pp. 53-62, 2015. 835 [64]
  97. U. Regmi, M. Palma, and C. G. Barroso, -Direct determination of organic acids in wine and 836 wine-derived products by Fourier transform infrared ( FT-IR ) spectroscopy and chemometric 837 techniques,‖ Anal. Chim. Acta, vol. 732, pp. 137-144, 2012. open in new tab
  98. F. Chinnici, U. Spinabelli, and A. Amati, -Simultaneous determination of Organic Acids, Sugars, 839 and Alcohols in musts and wines by an improved Ion-Exclusion HPLC Method,‖ J. Liq. open in new tab
  99. Chromatogr. Relat. Technol., vol. 25, no. 16, pp. 2551-2560, 2002. open in new tab
  100. A. Edelmann, J. Diewok, J. Rodriguez Baena, and B. Lendl, -High-performance liquid alcohols and organic acids in red wine,‖ Anal. Bioanal. Chem., vol. 376, pp. 92-97, 2003. 844 open in new tab
  101. M. Castellari, A. Versari, U. Spinabelli, S. Galassi, and A. Amati, -An improve HPLC method for 845 the analysis of Organic Acids, Carbohydrates, and Alcohols in grape musts and wines,‖ J. Liq. open in new tab
  102. Chromatogr. Relat. Technol., vol. 23, no. 13, pp. 2047-2056, 2000. open in new tab
  103. A. Zotou, Z. Loukou, and O. Karava, -Method Development for the Determination of Seven 848 open in new tab
  104. Organic Acids in Wines by Reversed-Phase High Performance Liquid Chromatography,‖ 849 Chromatographia, vol. 60, no. 1, pp. 39-44, 2004. open in new tab
  105. S. C. Cunha, J. O. Fernandes, M. A. Faria, I. M. P. L. V. O. Ferreira, and M. A. Ferreira, 851 -Quantification of Organic Acids in grape musts and Port Wines,‖ CYTA -J. Food, vol. 3, no. 4, 852 pp. 212-216, 2002. open in new tab
  106. M. S. Dopico-García, P. Valentao, P. B. Guerra, P. B. Andrade, and R. M. Seabra, -Experimental 854 design for extraction and quantification of phenolic compounds and organic acids in white ‗ 855 open in new tab
  107. Vinho Verde ' grapes,‖ Anal. Chim. Acta, vol. 583, pp. 15-22, 2007. open in new tab
  108. X.-K. Zhang, Y.-B. Lan, B.-Q. Zhu, X.-F. Xiang, C.-Q. Duan, and Y. Shi, -Changes in 857 monosaccharides , organic acids and amino acids during Cabernet Sauvignon wine ageing based 858 on a simultaneous analysis using gas chromatography -mass spectrometry,‖ J. Sci. Food Agric., 859 vol. 98, pp. 104-112, 2018. open in new tab
  109. przedkolumnowej w analizie techniką HPLC. Instrukcja do ćwiczeń.Uniwersytet Łódzki, Łódź.‖ 862 2012. open in new tab
  110. M. Alvarez-icaza and U. Bilitewski, -Mass Production of Biosensors,‖ Anal. Chem., vol. 65, no. 864 11, pp. 525-533, 1993. open in new tab
  111. L. M. da Costa Silva, V. P. Salviano dos Santos, A. Medeiros Salgado, and K. Signori Pereira, 866 -Chapter 7. Biosensors for Contaminants Monitoring in Food and Environment for Human and 867
  112. Environmental Health,‖ in State of the Art in Biosensors -Environmental and Medical 868 open in new tab
  113. Applications, 2013, pp. 151-168.
  114. B. Molinero-Abad, M. A. Alonso-Lomillo, O. Domínguez-Renedo, and M. J. Arcos-Martínez, 870 -Malate quinone oxidoreductase biosensors based on tetrathiafulvalene and gold nanoparticles 871 modified screen-printed carbon electrodes for malic acid determination in wine,‖ Sensors 872 open in new tab
  115. Actuators B Chem., vol. 202, pp. 971-975, 2014. open in new tab
  116. O. A. Loaiza et al., -Graphitized carbon nano fiber -Pt nanoparticle hybrids as sensitive tool for 874 preparation of screen printing biosensors . Detection of lactate in wines and ciders,‖ 875 Bioelectrochemistry, vol. 101, pp. 58-65, 2015. open in new tab
  117. C. Barbas, E. P. Moraes, and A. Villaseñor, -Capillary electrophoresis as a metabolomics tool for 877 non-targeted fingerprinting of biological samples,‖ J. Pharm. Biomed. Anal., vol. 55, pp. 823- 878 831, 2011. open in new tab
  118. M. Spanilá, J. Pazourek, M. Farková, and J. Havel, -Optimization of solid-phase extraction using 880 artificial neural networks in combination with experimental design for determination of 881 resveratrol by capillary zone electrophoresis in wines,‖ J. Chromatogr. A, vol. 1084, pp. 180-185, 882 2005. open in new tab
  119. J. L. Moreira and L. Santos, -Analysis of organic acids in wines by Fourier-transform infrared 884 spectroscopy,‖ Anal. Bioanal. Chem., vol. 382, pp. 421-425, 2005. open in new tab
  120. R. Bauer, H. Nieuwoudt, F. F. Bauer, J. Kossmann, K. R. Koch, and K. H. Esbensen, -FTIR 886 open in new tab
  121. Spectroscopy for Grape and Wine Analysis,‖ Anal. Chem., vol. March 1, pp. 1371-1379, 2008. 887 [81] -https://www.biocompare.com/Lab-Equipment/13033-HPLC-Refractive-Index-Detector-HPLC- 888 RI-Detector/ (13.02.2019).‖ .
  122. M.-H. Yang and Y.-M. Choong, -A rapid gas chromatographic method for direct determination 890 of short-chain (C2-C12) volatile organic acids in foods,‖ Food Chem., vol. 75, no. 1, pp. 101- 891 108, 2001. open in new tab
  123. T. Horák, J. Čulík, M. Jurková, P. Čejka, and V. Kellner, -Determination of free medium-chain open in new tab
  124. C. Schummer, O. Delhomme, B. M. R. Appenzeller, R. Wennig, and M. Millet, -Comparison of 896 MTBSTFA and BSTFA in derivatization reactions of polar compounds prior to GC / MS 897 analysis,‖ Talanta, vol. 77, pp. 1473-1482, 2009. open in new tab
  125. K. S. Docherty and P. J. Ziemann, -On-line , inlet-based trimethylsilyl derivatization for gas 899 chromatography of mono-and dicarboxylic acids,‖ J. Chromatogr. A, vol. 921, pp. 265-275, 900 2001. open in new tab
  126. S. Sun, J. Xie, F. Xie, and Y. Zong, -Determination of volatile organic acids in oriental tobacco 902 by needle-based derivatization headspace liquid-phase microextraction coupled to gas 903 chromatography / mass spectrometry,‖ J. Chromatogr. A, vol. 1179, pp. 89-95, 2008. 904 [87] open in new tab
  127. Y. Sha, J. Meng, Y. Zhang, C. Deng, and D. Wu, -Determination of volatile organic acids in 905 tobacco by single-drop microextraction with in-syringe derivatization followed by GC-MS,‖ J. open in new tab
  128. Sep. Sci., vol. 33, pp. 212-217, 2010. open in new tab
  129. A. G. Giumanini, G. Verardo, D. Della Martina, and N. Toniutti, -Improved Method for the 908 Analysis of Organic Acids and New Derivatization of Alcohols in Complex Natural Aqueous 909 open in new tab
  130. Matrixes : Application to Wine and Apple Vinegar,‖ J. Agric. Food Chem., vol. 49, pp. 2875- 910 2882, 2001. open in new tab
  131. S. Armenta, S. Garrigues, and M. De la Guardia, -Green Analytical Chemistry,‖ Trends Anal. open in new tab
  132. Chem., vol. 27, no. 6, pp. 497-511, 2008. open in new tab
  133. M. Fabjanowicz, J. Płotka-wysyłka, and J. Namieśnik, -Detection, identification and 914 determination of resveratrol in wine. Problems and challenges,‖ Trends Anal. Chem., vol. 103, pp. 915 21-33, 2018. open in new tab
Verified by:
Gdańsk University of Technology

seen 262 times

Recommended for you

Meta Tags