Diamondized carbon nanoarchitectures as electrocatalytic material for sulfate-based oxidizing species electrogeneration
Abstract
The introduction of nanotechnology seems to be an imperative factor to intensify the synergic effects of electrocatalytic materials to produce strong oxidant species or to increase the active sites on their surfaces as well as to enhance the conversion yield in a fuel cell, high-added value products, electrolytic treatment for environmental protection or the detection limit in electroanalysis. Recently, a new type of 3D-diamond electrodes was developed with boron-doped carbon nanowalls (B:CNW), which was manufactured using the microwave plasma-assisted chemical vapor deposition (CVD) process, improving the charge transfer and enhancing the electrochemical performance. The applicability of a BDD/boron-doped carbon nanowalls (BDD/B:CNW) anodes to degrade organic pollutants has been already investigated; however, no attempts at the electrosynthesis of oxidizing species using these diamond-carbon nanostructures have been reported yet. Therefore, the electrosynthesis of sulfate-based oxidizing species was studied here to answer relevant questions from both fundamental and practical point-of-view. The results demonstrated that persulfate was efficiently produced at the BBD electrode, while that the ion-radical sulfate could be the most important oxidant at BDD/B:CNW anode when compared to other electrocatalytic materials, including BDD surfaces. Persulfate concentrations ranged from 3 to 6 µM, depending on the applied current density (2.5, 5.0, and 15 mA cm−2), at diamond electrodes. A dye-model pollutant - methyl orange (MO) was degraded below the limit of detection within 45 min using BDD/B:CNW when in-situ sulfate-based oxidizing species were electrogenerated. These kinds of 3D-diamond-carbon nanostructures are thus promising as novel electrocatalyst for various catalytic applications in the environmental and energy fields.
Citations
-
1 1
CrossRef
-
0
Web of Science
-
1 0
Scopus
Authors (7)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.electacta.2022.141069
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
ELECTROCHIMICA ACTA
no. 430,
ISSN: 0013-4686 - Language:
- English
- Publication year:
- 2022
- Bibliographic description:
- de Freitas Araújo K. C., Vieira dos Santos E., Pierpaoli M., Ficek M., Santos J. E. L., Martínez-Huitle C. A., Bogdanowicz R.: Diamondized carbon nanoarchitectures as electrocatalytic material for sulfate-based oxidizing species electrogeneration// ELECTROCHIMICA ACTA -Vol. 430, (2022), s.141069-
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.electacta.2022.141069
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 116 times
Recommended for you
Comparison of the paracetamol electrochemical determination using boron-doped diamond electrode and boron-doped carbon nanowalls
- P. Niedziałkowski,
- Z. Celuba,
- N. Malinowska
- + 6 authors
Electrochemical oxidation of sulphamerazine at boron-doped diamond electrodes: Influence of boron concentration
- A. Fabiańska,
- R. Bogdanowicz,
- P. Zięba
- + 7 authors
Determination of chemical oxygen demand (cod) at boron-doped diamond (bdd) sensor by means of amperometric technique
- R. Bogdanowicz,
- J. Czupryniak,
- M. Gnyba
- + 4 authors