Dispersive liquid-liquid microextraction combined with gas chromatography–mass spectrometry for in situ determination of biogenic amines in meat: Estimation of meat's freshness - Publication - Bridge of Knowledge

Search

Dispersive liquid-liquid microextraction combined with gas chromatography–mass spectrometry for in situ determination of biogenic amines in meat: Estimation of meat's freshness

Abstract

A dispersive liquid-liquid microextraction (DLLME) gas chromatography–mass spectrometry (GC–MS) technique was developed for the determination of selected biogenic amines (BAs) in samples of poultry, pork and beef. Prior to the extraction process, an appropriate volume of sodium hydroxide solution was added to each of the portioned samples. Next, samples were homogenized, centrifuged and finally sonicated at an increased temperature. After another centrifugation, the supernatant was made up to 50 mL in a calibrated flask. Subsequently, 5 mL of supernatant was separately subjected to a derivatization and extraction procedure. A mixture of methanol (dispersive solvent; 210 μL), chloroform (extractive solvent; 300 μL), and isobutyl chloroformate (derivatizing reagent; 100 μL) was used in the extraction process together with an admixture of pyridine and HCl in order to eliminate the by-products. The application of the method enables fast derivatization and extraction of the BAs and a straightforward and rapid sample enrichment. It displayed good linearity, intra- and inter-day precision and good recoveries. The proposed methodology is characterized by low limits of detection and quantification (0.003–0.009 μg/g and 0.009–0.029 μg/g, respectively). The green character of the method was established based on the results of two tools, namely the Analytical Eco-Scale and GAPI. It was successfully used to analyse samples of poultry, porcine and bovine meat. Multivariate statistical data analysis was applied in order to evaluate the potential use of the determined BAs as spoilage markers of particular meat types.

Citations

  • 3 8

    CrossRef

  • 0

    Web of Science

  • 4 5

    Scopus

Cite as

Full text

download paper
downloaded 143 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
MICROCHEMICAL JOURNAL no. 145, pages 130 - 138,
ISSN: 0026-265X
Language:
English
Publication year:
2019
Bibliographic description:
Wojnowski W., Płotka-Wasylka J., Namieśnik J.: Dispersive liquid-liquid microextraction combined with gas chromatography–mass spectrometry for in situ determination of biogenic amines in meat: Estimation of meat's freshness// MICROCHEMICAL JOURNAL. -Vol. 145, (2019), s.130-138
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.microc.2018.10.034
Bibliography: test
  1. W. Wojnowski, T. Majchrzak, T. Dymerski, J. Gębicki, J. Namieśnik, Electronic noses: Powerful 387 tools in meat quality assessment, Meat Sci. 131 (2017) 119-131. doi:10.1016/j.meatsci.2017.04.240. 388 open in new tab
  2. J.S. Min, S.O. Lee, A. Jang, C. Jo, C.S. Park, M. Lee, Relationship between the concentration of 389 biogenic amines and volatile basic nitrogen in fresh beef, pork, and chicken meat, Asian-Australasian 390 J. Anim. Sci. 20 (2007) 1278-1284. doi:10.5713/ajas.2007.1278. open in new tab
  3. D. Yang, A. Lu, D. Ren, J. Wang, Rapid determination of biogenic amines in cooked beef using 392 hyperspectral imaging with sparse representation algorithm, Infrared Phys. Technol. 86 (2017) 23-34. 393 doi:10.1016/j.infrared.2017.08.013. open in new tab
  4. R.G. Leuschner, M. Heidel, W.P. Hammes, Histamine and tyramine degradation by food 395 fermenting microorganisms, Int. J. Food Microbiol. 39 (1998) 1-10. doi:10.1016/S0168- 396 1605(97)00109-8. open in new tab
  5. C.A. Lázaro, C.A. Conte-Júnior, A.C. Canto, M.L.G. Monteiro, B. Costa-Lima, A.G. da Cruz, E.T.
  6. Mársico, R.M. Franco, Biogenic amines as bacterial quality indicators in different poultry meat species, 399 LWT -Food Sci. Technol. 60 (2015) 15-21. doi:10.1016/j.lwt.2014.09.025. open in new tab
  7. A.R. Shalaby, Significance of biogenic amines to food safety and human health, Food Res. Int. 401 29 (1996) 675-690. doi:10.1016/S0963-9969(96)00066-X. open in new tab
  8. J.L. Mietz, E. Karmas, Chemical quality index of canned tuna as determined by high-pressure 403 liquid chromatography, J. Food Sci. 42 (1977) 155-158. doi:10.1111/j.1365-2621.1977.tb01240.x. 404 open in new tab
  9. M.T. Veciana-Nogués, A. Mariné-Font, M.C. Vidal-Carou, Biogenic amines as hygienic quality 405 indicators of tuna. relationships with microbial counts, atp-related compounds, volatile amines, and 406 organoleptic changes, J. Agric. Food Chem. 45 (1997) 2036-2041. doi:10.1021/jf960911l. 407 open in new tab
  10. C.M. Silva, M.B.A. Glória, Bioactive amines in chicken breast and thigh after slaughter and 408 during storage at 4±1 °C and in chicken-based meat products, Food Chem. 78 (2002) 241-248. 409 doi:10.1016/S0308-8146(01)00404-6. open in new tab
  11. F.B. Erim, Recent analytical approaches to the analysis of biogenic amines in food samples, 411
  12. TrAC -Trends Anal. Chem. 52 (2013) 239-247. doi:10.1016/j.trac.2013.05.018. open in new tab
  13. J. Płonka, Food analysis -Samples preparation and chromatographic methods in determination 413 of selected biogenic amines, methylxanthines and water-soluble vitamins, Anal. Methods. 4 (2012) 414 3071-3094. doi:10.1039/c2ay25706h. open in new tab
  14. E. Dadáková, M. Křížek, T. Pelikánová, Determination of biogenic amines in foods using ultra- 416 performance liquid chromatography (UPLC), Food Chem. 116 (2009) 365-370. 417 doi:10.1016/J.FOODCHEM.2009.02.018. open in new tab
  15. J. Płotka-Wasylka, V. Simeonov, J. Namieśnik, An in situ derivatization -dispersive liquid-liquid 419 microextraction combined with gas-chromatography -mass spectrometry for determining biogenic 420 amines in home-made fermented alcoholic drinks, J. Chromatogr. A. 1453 (2016) 10-18. 421 doi:10.1016/j.chroma.2016.05.052. open in new tab
  16. A. Gałuszka, Z. Migaszewski, J. Namieśnik, The 12 principles of green analytical chemistry and 423 the SIGNIFICANCE mnemonic of green analytical practices, TrAC Trends Anal. Chem. 50 (2013) 78-84. 424 doi:10.1016/J.TRAC.2013.04.010. open in new tab
  17. M. Kamankesh, A. Mohammadi, H. Hosseini, Z. Modarres Tehrani, Rapid determination of 426 polycyclic aromatic hydrocarbons in grilled meat using microwave-assisted extraction and dispersive 427 liquid-liquid microextraction coupled to gas chromatography-mass spectrometry, Meat Sci. 103 (2015) 428 61-67. doi:10.1016/J.MEATSCI.2015.01.001. open in new tab
  18. C. Almeida, J.O. Fernandes, S.C. Cunha, A novel dispersive liquid-liquid microextraction 430 (DLLME) gas chromatography-mass spectrometry (GC-MS) method for the determination of eighteen 431 biogenic amines in beer, Food Control. 25 (2012) 380-388. doi:10.1016/J.FOODCONT.2011.10.052. 432 [17] open in new tab
  19. H. Chen, H. Chen, J. Ying, J. Huang, L. Liao, Dispersive liquid-liquid microextraction followed by 433 high-performance liquid chromatography as an efficient and sensitive technique for simultaneous 434 determination of chloramphenicol and thiamphenicol in honey, Anal. Chim. Acta. 632 (2009) 80-85. 435 doi:10.1016/J.ACA.2008.10.068. open in new tab
  20. J. Płotka-Wasylka, V. Simeonov, J. Namieśnik, Characterization of home-made and regional 437 fruit wines by evaluation of correlation between selected chemical parameters, Microchem. J. 140 438 (2018) 66-73. doi:10.1016/J.MICROC.2018.04.010. open in new tab
  21. J. Płotka-Wasylka, V. Simeonov, J. Namieśnik, Evaluation of the Impact of Storage Conditions 440 on the Biogenic Amines Profile in Opened Wine Bottles, Molecules. 23 (2018) 1130. 441 doi:10.3390/molecules23051130. open in new tab
  22. J. Demšar, T. Curk, A. Erjavec, T. Hočevar, M. Milutinovič, M. Možina, M. Polajnar, M. Toplak, 443
  23. A. Starič, M. Stajdohar, L. Umek, L. Zagar, J. Zbontar, M. Zitnik, B. Zupan, Orange: Data Mining Toolbox 444 in Python, J. Mach. Learn. Res. 14 (2013) 23492353.
  24. K. Kira, L. Rendell, The Feature Selection Problem: Traditional Methods and a New Algorithm, 446 in: 10th Natl. Conf. Artif. Intell., AAAI Press, San Jose, 1992: pp. 129-134. open in new tab
  25. A. Todorov, An Overview of the RELIEF Algorithm and Advancements, in: M. Windle (Ed.), Stat. 449 Approaches to Gene X Environ. Interact. Complex Phenotypes, MIT Press, 2016. open in new tab
  26. W. Wojnowski, T. Majchrzak, T. Dymerski, J. Gębicki, J. Namieśnik, Poultry meat freshness 451 evaluation using electronic nose technology and ultra-fast gas chromatography, Monatshefte Für 452 open in new tab
  27. Chemie -Chem. Mon. 148 (2017) 1631-1637. doi:10.1007/s00706-017-1969-x. open in new tab
  28. A. Gałuszka, Z.M. Migaszewski, P. Konieczka, J. Namieśnik, Analytical Eco-Scale for assessing 454 the greenness of analytical procedures, TrAC Trends Anal. Chem. 37 (2012) 61-72. 455 doi:10.1016/J.TRAC.2012.03.013. open in new tab
  29. J. Płotka-Wasylka, A new tool for the evaluation of the analytical procedure: Green Analytical 457 Procedure Index, Talanta. 181 (2018) 204-209. doi:10.1016/J.TALANTA.2018.01.013. 458 [26] open in new tab
  30. N. Sayem, E. Daher, R.E. Simard, Putrefactive Amine Changes in Relation to Microbial Counts 459 of Ground Beef During Storage, J. Food Prot. 48 (1985) 54-58.
  31. F. Galgano, F. Favati, M. Bonadio, V. Lorusso, P. Romano, Role of biogenic amines as index of 461 freshness in beef meat packed with different biopolymeric materials, Food Res. Int. 42 (2009) 1147- 462 1152. doi:10.1016/J.FOODRES.2009.05.012. open in new tab
  32. C.C. Balamatsia, E.K. Paleologos, M.G. Kontominas, I.N. Savvaidis, Correlation between 464 microbial flora, sensory changes and biogenic amines formation in fresh chicken meat stored 465 aerobically or under modified atmosphere packaging at 4 °C: Possible role of biogenic amines as 466 spoilage indicators, Anton. Leeuw. Int. J. G. 89 (2006) 9-17. doi:10.1007/s10482-005-9003-4. open in new tab
  33. M.T. Veciana-Nogués, A. Mariné-Font, M.C. Vidal-Carou, Biogenic amines as hygienic quality 468 indicators of tuna. relationships with microbial counts, atp-related compounds, volatile amines, and 469 organoleptic changes, J. Agric. Food Chem. 45 (1997) 2036-2041. doi:10.1021/jf960911l. 470 [30] open in new tab
  34. G. Vinci, M.L. Antonelli, Biogenic amines: Quality index of freshness in red and white meat, 471 Food Control. 13 (2002) 519-524. doi:10.1016/S0956-7135(02)00031-2. open in new tab
  35. W. Wojnowski, J. Płotka-Wasylka, K. Kalinowska, T. Majchrzak, T. Dymerski, P. Szweda, J. 473 open in new tab
  36. Namieśnik, Direct determination of cadaverine in the volatile fraction of aerobically stored chicken 474 breast samples, Monatshefte Für Chemie -Chem. Mon. 149 (2018) 1521-1525. doi:10.1007/s00706- 475 018-2218-7. open in new tab
  37. J. Demšar, G. Leban, B. Zupan, FreeViz-An intelligent multivariate visualization approach to 477 explorative analysis of biomedical data, J. Biomed. Inform. 40 (2007) 661-671. 478 doi:10.1016/J.JBI.2007.03.010. open in new tab
Verified by:
Gdańsk University of Technology

seen 190 times

Recommended for you

Meta Tags