Ecological and Health Effects of Lubricant Oils Emitted into the Environment - Publication - Bridge of Knowledge

Search

Ecological and Health Effects of Lubricant Oils Emitted into the Environment

Abstract

Lubricating oils used in machines with an open cutting system, such as a saw or harvester, are applied in forest areas, gardening, in the household, and in urban greenery. During the operation of the device with an open cutting system, the lubricating oil is emitted into the environment. Therefore, the use of an oil base and refining additives of petroleum origin in the content of lubricants is associated with a negative impact on health and the environment. The current legal regulations concerning lubricants applicable in the European Union (EU) assess the degree of biodegradability. Legislation permits the use of biodegradable oils at 60% for a period of 28 days. This means that, in practice, lubricating oil considered to be biodegradable can contain up to 50% of the so-called petroleum oil base. The paper aims to draw public attention to the need to reduce the toxicity and harmful eects, due to their composition, of lubricating oils emitted into the environment on health. The authors discuss the impact of petroleum oil lubricants on soils, groundwater, vegetation, and animals, and the impact of petroleum-origin oil mist on health. An overview of test methods for the biodegradability of lubricating oils is presented, including the Organization for Economic Cooperation and Development (OECD) 301 A–F, 310, and 302 A–D tests, as well as their standard equivalents. The current legal regulations regarding the use and control of lubricating oils emitted into the environment are discussed. Legal provisions are divided according to their area of application. Key issues regarding the biodegradability and toxicity of petroleum fractions in lubricating oils are also addressed. It is concluded that lubricating oils, emitted or potentially emitted into the environment, should contain only biodegradable ingredients in order to eliminate the negative impact on both the environment and health. Total biodegradability should be confirmed by widely applied tests. Therefore, a need to develop and implement low-cost and simple control procedures for each type of lubricating oil, ensuring the possibility of an indisputable conclusion about the presence and total absence of petroleum-derived components in oil, as well as the content of natural ingredients, occurs.

Citations

  • 1 2 2

    CrossRef

  • 0

    Web of Science

  • 1 2 0

    Scopus

Cite as

Full text

download paper
downloaded 67 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
International Journal of Environmental Research and Public Health no. 16, pages 1 - 13,
ISSN: 1660-4601
Language:
English
Publication year:
2019
Bibliographic description:
Nowak P., Kucharska K., Kamiński M.: Ecological and Health Effects of Lubricant Oils Emitted into the Environment// International Journal of Environmental Research and Public Health. -Vol. 16, iss. 16 (2019), s.1-13
DOI:
Digital Object Identifier (open in new tab) 10.3390/ijerph16163002
Bibliography: test
  1. European Union. Rozporządzenie Komisji (WE) NR 440/2008 z dnia 30 maja 2008 r. metoda OECD 301 A-F; open in new tab
  2. European Union: Brussels, Belgium, 2008. open in new tab
  3. Beran, E. Wpływ budowy chemicznej bazowych olejów smarowych na ich biodegradowalność i wybrane właściwości eksploatacyjne; Wyd. PWR: Wrocław, Poland, 2008.
  4. PrzemysłoweŚrodki Smarne. Available online: http://produkty.totalpolska.pl/wiedza/rozdzial%2001.pdf (accessed on 10 June 2019).
  5. Podniało, A. Paliwa, oleje i smary w ekologicznej eksploatacji; WNT: Warszawa, Poland, 2009.
  6. Tang, Z.; Li, S. A review of recent developments of friction modifiers for liquid lubricants (2007-present). open in new tab
  7. Curr. Opin. Solid State Mater. Sci. 2014, 18, 119-139. [CrossRef] open in new tab
  8. Zainal, N.A.; Zulkifli, N.W.M.; Gulzar, M.; Masjuki, H.H. A review on the chemistry, production, and technological potential of bio-based lubricants. Renew. Sustain. Energy Rev. 2018, 82, 80-102. [CrossRef] open in new tab
  9. Vasile, C.; Sivertsvik, M.; Miteluţ, A.; Brebu, M.; Stoleru, E.; Rosnes, J.; Tănase, E.; Khan, W.; Pamfil, D.; Cornea, C.; et al. Comparative analysis of the composition and active property evaluation of certain essential oils to assess their potential applications in active food packaging. Materials 2017, 10, 45. [CrossRef] [PubMed] open in new tab
  10. Totten, G.E.; Shah, R.J.; Westbrook, S.R. Fuels and Lubricants Handbook: Technology, Performance, and Testing; open in new tab
  11. Totten, G.E., Westbrook, S.R., Shah, R.J., Eds.; ASTM International: Glen Burnie, MD, USA, 2003. open in new tab
  12. Garrett, S. Vegetable oil for lubricating chain saws. US Dep. Agric. For. Serv. 1998, 5100, 1-4. open in new tab
  13. Wu, M.M.; Ho, S.C.; Forbus, T.R. Synthetic lubricant base stock processes and products. In Practical Advances in Petroleum Processing; Springer: New York, NY, USA, 2007; pp. 553-577. open in new tab
  14. Kijeńska, D. Oleje mineralne: Metoda oznaczania. Podstawy i Metody OcenyŚrodowiska Pr. 1999, 22, 158-164.
  15. Syahir, A.Z.; Zulkifli, N.W.M.; Masjuki, H.H.; Kalam, M.A.; Alabdulkarem, A.; Gulzar, M.; Khuong, L.S.; Harith, M.H. A review on bio-based lubricants and their applications. J. Clean. Prod. 2017, 168, 997-1016. [CrossRef] open in new tab
  16. Farfan-Cabrera, L.I.; Gallardo, E.; Gómez-Guarneros, M.; Hernandez Peña, A. Tribological Performance of an Engine Mineral oil Blended with a Vegetable Oil under approached Long-Term Use Conditions; SAE Technical Papers: Warrendale, PA, USA, 2019. open in new tab
  17. Leslie, R.R. Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology, 2nd ed.; Chemical Industries, Ed.; CRC Press: Boca Raton, FL, USA, 2013. open in new tab
  18. Shahabuddin, M.; Masjuki, H.H.; Kalam, M.A.; Bhuiya, M.M.K.; Mehat, H. Comparative tribological investigation of bio-lubricant formulated from a non-edible oil source (Jatropha oil). Ind. Crops Prod. 2013, 47, 323-330. [CrossRef] open in new tab
  19. Cain, R.B. Biodegradation of Lubricants. In Proceedings of the 8th International Biodeterioration and Biodegradation, Windsor, ON, Canada, 26-31 August 1990; pp. 249-275.
  20. Beran, E. Biodegradowalność jako nowe kryterium w ocenie jakości olejów smarowych. Przem. Chem. 2005, 84, 320-328.
  21. Singh, Y. Tribological behavior as lubricant additive and physiochemical characterization of Jatropha oil blends. Friction 2015, 3, 320-332. [CrossRef] open in new tab
  22. Iłowska, J.; Chrobak, J.; Grabowski, R.; Szmatoła, M.; Woch, J.; Szwach, I.; Drabik, J.; Trzos, M.; Kozdrach, R.; Wrona, M. Designing lubricating properties of vegetable base oils. Molecules 2018, 23, 2025. [CrossRef] open in new tab
  23. Aluyor, E.O.; Ori-jesu, M. Biodegradation of mineral oils-A review. Afr. J. Biotechnol. 2009, 8, 915-920. open in new tab
  24. Włodarczyk-Makuła, M. Zagrożenie zanieczyszczeniaśrodowiska wodnego związkami ropopochodnymi. LAB Lab. Apar. Badania 2013, 21, 12-16. open in new tab
  25. Wojtkowiak, R.; Tomczak, R.J. Analiza porównawcza wybranych właściwości olejów smarujących układ tnący pilarki łańcuchowej. Rośliny Oleiste 2003, 24, 317-325.
  26. Stelmaszuk, W.; Linowska, E.; Podedworny, I.; Antoniuk, N. Wpływ produktów ropopochodnych na organizmyżywe. In Proceedings of the Ogólnopolskie Sympozjum Naukowe "Związki ropopochodne-kryteria i metodyka oceny skażenia, Karwice, Poland, 13-15 April 1994.
  27. Abosede, E.E. Effect of Crude Oil Pollution on some Soil Physical Properties. IOSR J. Agric. Vet. Sci. 2013, 6, 14-17. [CrossRef] open in new tab
  28. Dmochowska, A.; Dmochowski, D.; Biegugnis, S. Charakterystyka biorekultywacji gleb skażonych produktami ropopochodnymi metodą pryzmowania ex situ. Annu. Set Environ. Prot. 2016, 18, 759-771.
  29. Krzemińska, S.; Irzmańska, E. Zagrożenia olejami mineralnymi na stanowiskach pracy oraz nowe rozwiązania polimerowych materiałów ochronnych w wybranychśrodkach ochrony indywidualnej. Med. Pr. 2011, 62, 435-443. [PubMed] open in new tab
  30. Neri, F.; Foderi, C.; Laschi, A.; Fabiano, F.; Cambi, M.; Sciarra, G.; Aprea, M.C.; Cenni, A.; Marchi, E. Determining exhaust fumes exposure in chainsaw operations. Environ. Pollut. 2016, 218, 1162-1169. [CrossRef] open in new tab
  31. Gawęda, E.; Bednarek, K.; Szydło, Z. Oznaczanie mgły olejowej w powietrzu na stanowiskach pracy metodą wagową. Bezpieczeństwo Pr. 2005, 12, 11-14.
  32. Rogoś, E.; Urbański, A. Charakterystyki tribologiczne roślinnych olejów bazowych dla olejów hydraulicznych. Tribologia 2010, 5, 201-212. open in new tab
  33. Ramadan, K.M.A. Biodegradation of used lubricating and diesel oils by a new yeast strain Candida viswanathii KA-2011. Afr. J. Biotechnol. 2012, 11, 14166-14174. [CrossRef] open in new tab
  34. Broniewicz, E. Rachunek nakładów na ochronęśrodowiska w krajach Unii Europejskiej. Ekon. iŚrodowisko Czas. Stowarzyszenia Ekon.Środowiska i Zasobów Nat. 2006, 1, 125-134.
  35. Lasy Państwowe. Available online: http://www.lasy.gov.pl/pl (accessed on 3 April 2019).
  36. Podsiadło, Ł.; Krzyśko-Łupicka, T. Techniki bioremediacji substancji ropopochodnych i metody oceny ich efektywności. Inżynieria i Ochr.Środowiska 2013, 16, 459-476.
  37. Zagórski, Z. Modification, degradation and stabilization of polymers in view of the classification of radiation spurs. Radiat. Phys. Chem. 2002, 63, 9-19. [CrossRef] open in new tab
  38. Klamerus-Iwan, A.; Błońska, E.; Lasota, J.; Kalandyk, A.; Waligórski, P. Influence of Oil Contamination on Physical and Biological Properties of Forest Soil After Chainsaw Use. Water Air Soil Pollut. 2015, 226, 389. [CrossRef] [PubMed] open in new tab
  39. Rodriguez Couto, S. Exploitation of biological wastes for the production of value-added products uncler solid-state fermentation conditions. Biotechnol. J. 2008, 3, 859-870. [CrossRef] [PubMed] open in new tab
  40. Decision of the General Director of State Forests No. 148 of 30 July 2018 regarding the provision of uniform template documents for ordering forest services in the field of forest management in organizational units of State Forests. Available online: https://sip.lex.pl/akty-prawne/dzienniki-resortowe/udostepnienie- jednolitych-wzorow-dokumentow-dotyczacych-zamawiania-35529417 (accessed on 1 July 2019). open in new tab
  41. European Union. Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the registration, evaluation, authorization and restriction of chemicals (REACH); European Union: Brussels, Belgium, 2006. open in new tab
  42. Organization for Economic Co-operation and Development. (2006) OECD Guidlines for the Testing of Chemical; Organization for Economic Co-operation and Development: Paris, France, 2006. open in new tab
  43. Beran, E. Ocena biodegradowalności słabo rozpuszczalnych w wodzie związków organicznych na przykładzie olejów smarnych. Probl. Ekol. 2008, 12, 153-159.
  44. Zajezierska, A.; Ptak, S. Badania biodegradowalności smarów plastycznych. Nafta-Gaz 2015, LXXI, 793-799.
  45. International Organization for Standardization. Water Quality-Evaluation of the "Ready", "Ultimate" Aerobic Biodegradability of Organic Compounds in an Aqueous Medium-Method by Analysis of Dissolved Organic Carbon (DOC); International Organization for Standardization: Geneva, Switzerland, 2012. open in new tab
  46. International Organization for Standardization. Water Quality-Evaluation of Ultimate Aerobic Biodegradability of Organic Compounds in Aqueous Medium-Carbon Dioxide Evolution Test; International Organization for Standardization: Geneva, Switzerland, 2000. open in new tab
  47. International Organization for Standardization. Water Quality-Evaluation in an Aqueous Medium of the "Ultimate" Aerobic Biodegradability of Organic Compounds-Method by Analysis of Biochemical Oxygen Demand (Closed Bottle Test); International Organization for Standardization: Geneva, Switzerland, 1997. open in new tab
  48. International Organization for Standardization. Water Quality-Evaluation of Ultimate Aerobic Biodegradability of Organic Compounds in Aqueous Medium by Determination of Oxygen Demand in a Closed Respirometer; open in new tab
  49. International Organization for Standardization: Geneva, Switzerland, 1999. open in new tab
  50. International Organization for Standardization. Water Quality + Evaluation of Ultimate Aerobic Biodegradability of Organic Compounds in Aqueous Medium-Method by Analysis of Inorganic Carbon in Sealed Vessels (CO2 Headspace Test); International Organization for Standardization: Geneva, Switzerland, 2005. open in new tab
  51. International Organization for Standardization. Water Quality-Evaluation of the Aerobic Biodegradability of Organic Compounds in an Aqueous Medium-Semi-Continuous Activated Sludge Method (SCAS); International Organization for Standardization: Geneva, Switzerland, 1994. open in new tab
  52. International Organization for Standardization. Water Quality-Evaluation of Ultimate Aerobic Biodegradability of Organic Compounds in Aqueous Medium-Static Test (Zahn-Wellens Method); International Organization for Standardization: Geneva, Switzerland, 2002. open in new tab
  53. Zittwitz, M.; Gerhardt, M.; Ringpfeil, M. Practical Experience from Commercial In-situ Bioremediation in Cases of Cable Insulating Oil and Tri-/Perchlorethylene. 2000. Available online: www.biopract.de (accessed on 1 July 2019).
  54. National Contaminated Sites Remediation Program (Canada). Project Summary: Bioremediation of Soil Contaminated by Transformer Oil (Boucherville) and Diesel Fuel (Jonquiere); open in new tab
  55. Quebec, QC, Canada, 1995.
  56. Nwaogu, L.A.; Onyeze, G.O.C.; Nwabueze, R.N. Degradation of diesel oil in a polluted soil using Bacillus subtilis. Afr. J. Biotechnol. 2008, 7, 1939-1943.
  57. Muratovba, A.; Turkovskaia, O. Degradation of Mineral Oils by a Selected Microbial Association. Prikl Biokhim Mikrobiol 2001, 37, 175-180.
  58. Riis, V.; Brandt, M.; Miethe, D.; Babel, W. Influence of special surfactants on the microbial degradation of mineral oils. Chemosphere 2000, 41, 1001-1006. [CrossRef] open in new tab
  59. Stryker, W.A. Absorption of liquid petrolatum ("mineral oil") from the intestine. Arch. Pathol. Lab. Med. Online 1941, 31, 670-692.
  60. Ebert, A.G.; Schlieffer, C.R.; Hess, S.M. Absorption, disposition and excretion of 3H mineral oil in rats. J. Pharm. Sci. 1996, 55, 923-929. [CrossRef] [PubMed] open in new tab
  61. Shymanski, L.K.; Kommineni, P.M.; Naro, P.A.; Mackerer, C.R. Oral absorption and pharmacokinetic studies of radiolabeled normal paraffinic, isoparaffinic and cycloparaffinic surrogatesin white oil in Fischer 344 rats. In Proceedings of the Transcript of the Toxicology Forum, Special Meeting on Mineral Hydrocarbons;
  62. Oxford, UK, 1992; pp. 86-101. open in new tab
  63. Bollinger, J.N. Metabolic Fate of Mineral Oil Adjuvants Using 14C-Labeled Tracers I: Mineral Oil. J. Pharm. Sci. 1970, 59, 1084-1088. [CrossRef] [PubMed] open in new tab
  64. Löf, A.; Lam, H.R.; Gullstrand, E.; Øtergaard, G.; Ladefoged, O. Distribution of Dearomatised White Spirit in Brain, Blood, and Fat Tissue after Repeated Exposure of Rats. Pharmacol. Toxicol. 1999, 85, 92-97. [CrossRef] [PubMed] open in new tab
  65. Cravedi, J.; Perdu, E. In vitro metabolic study on alkanes in hepatic microsomes from humans and rats. EFSA Support. Publ. 2012, 9. [CrossRef] open in new tab
  66. Concin, N.; Hofstetter, G.; Plattner, B.; Tomovski, C.; Fiselier, K.; Gerritzen, K.; Fessler, S.; Windbichler, G.; Zeimet, A.; Ulmer, H.; et al. Mineral oil paraffins in human body fat and milk. Food Chem. Toxicol. 2008, 46, 544-552. [CrossRef] [PubMed] open in new tab
  67. Barp, L.; Kornauth, C.; Wuerger, T.; Rudas, M.; Biedermann, M.; Reiner, A.; Concin, N.; Grob, K. Mineral oil in human tissues, Part I: Concentrations and molecular mass distributions. Food Chem. Toxicol. 2014, 72, 312-321. [CrossRef] [PubMed] open in new tab
  68. Farfan-Cabrera, L.I.; Gallardo-Hernández, E.A.; Pérez-González, J.; Marín-Santibáñez, B.M.; Lewis, R. Effects of Jatropha lubricant thermo-oxidation on the tribological behaviour of engine cylinder liners as measured by a reciprocating friction test. Wear 2019, 426-427, 910-918. [CrossRef] open in new tab
  69. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Verified by:
Gdańsk University of Technology

seen 189 times

Recommended for you

Meta Tags