Effect of band gap on power conversion efficiency of single-junction semiconductor photovoltaic cells under white light phosphor-based LED illumination - Publication - Bridge of Knowledge

Search

Effect of band gap on power conversion efficiency of single-junction semiconductor photovoltaic cells under white light phosphor-based LED illumination

Abstract

On the basis of the detailed balance principle, curves of efficiency limit of single-junction photovoltaic cells at warm and cool white light phosphor-based LED bulbs with luminous efficacy exceeding 100 lm/W have been simulated. The effect of energy band gap and illuminance on the efficiencies at warm and cool light is discussed. The simulations carried out show that maximum power conversion efficiency at 1000 lx reaches 52.0% for cool light and 53.6% for warm one, while the optimal energy band gap is 1.80 eV and 1.88 eV, respectively. The simulated limits are also referenced to experimental data presented in literature to show that there is still a lot of room for improving indoor photovoltaic cells.

Citations

  • 3 0

    CrossRef

  • 0

    Web of Science

  • 3 2

    Scopus

Cite as

Full text

download paper
downloaded 50 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING no. 107, pages 1 - 5,
ISSN: 1369-8001
Language:
English
Publication year:
2020
Bibliographic description:
Jarosz G., Marczyński R., Signerski R.: Effect of band gap on power conversion efficiency of single-junction semiconductor photovoltaic cells under white light phosphor-based LED illumination// MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING -Vol. 107, (2020), s.1-5
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.mssp.2019.104812
Bibliography: test
  1. B. Minnaert, P. Veelaert, Efficiency simulations of thin films chalcogenide photovoltaic cells for different indoor lighting conditions, Thin Solid Films 519 (2011) 7537-7540. open in new tab
  2. T.E. Girish, Some suggestions for photovoltaic power generation using artificial light illumination, Sol. Energy Mater. Sol. Cells 90 (2006) 2569-2571. open in new tab
  3. M. Foti, C. Tringali, A. Battaglia, N. Sparta, S. Lombardo, C. Gerardi, Efficient flexible thin film silicon module on plastics for indoor energy harvesting, Sol. Energy Mater. Sol. Cells 130 (2014) 490-494. open in new tab
  4. Y. Aoki, Photovoltaic performance of organic photovoltaics for indoor energy harvester, Org. Electron. 48 (2017) 194-197. open in new tab
  5. F. De Rossi, T. Pontecorvo, T.M. Brown, Characterization of photovoltaic devices for indoor light harvesting and customization of flexible dye solar cells to deliver superior efficiency under artificial lighting, Appl. Energy 156 (2015) 413-422.
  6. M. Freunek (Müller, M. Freunek, L.M. Reindl, Maximum efficiencies of indoor photovoltaic devices, IEEE J. Photovolt. 3 (1) (2013) 59-64. open in new tab
  7. G. Apostolou, A. Reunders, M. Verwaal, Comparison of the indoor performance of 12 commercial PV products by a simple model, Energy Sci. Eng. 4 (1) (2016) 69-85. open in new tab
  8. C.A. Reynaud, R. Clerc, P.B. Lechêne, M. H� ebert, A. Cazier, A.C. Arias, Evaluation of indoor photovoltaic power production under directional and diffuse lighting conditions, Sol. Energy Mater. Sol. Cells 200 (2019) 110010-110018. open in new tab
  9. C.-H. Chen, P.-T. Chou, T.-C. Yin, K.-F. Chen, M.-L. Jiang, Y.-J. Chang, C.-K. Tai, B.- C. Wang, Rational design of cost-effective dyes for high performance dye-sensitized cells in indoor light environments, Org. Electron. 59 (2018) 69-76. open in new tab
  10. V. Bahrami-Yekta, T. Tiedje, Limiting efficiency of indoor silicon photovoltaic devices, Opt. Express 26 (22) (2018) 28238-28240. open in new tab
  11. C.L. Cutting, M. Bag, D. Venkataraman, Indoor light recycling: a new home for organic photovoltaics, J. Mater. Chem. C 4 (2016) 10367-10370. open in new tab
  12. B. Minnaert, P. Veelaert, A proposal for typical artificial light sources for the characterization of indoor photovoltaic applications, Energies 7 (2014) 1500-1516. open in new tab
  13. I. Mathews, P.J. King, F. Stafford, R. Frizzell, Performance of III-V solar cells as indoor light energy harvesters, IEEE J. Photovolt. 6 (1) (2016) 230-235. open in new tab
  14. R. Steim, T. Ameri, P. Schilinsky, C. Waldauf, G. Dennler, M. Scharber, C.J. Brabec, Organic photovoltaics for low light applications, Sol. Energy Mater. Sol. Cells 95 (2011) 3256-3261. open in new tab
  15. J.S. Goo, S.-C. Shin, Y.-J. You, J.W. Shim, Polymer surface modification to optimize inverted organic devices under indoor light conditions, Sol. Energy Mater. Sol. Cells 184 (2018) 31-37. open in new tab
  16. H.K.H. Lee, J. Wu, J. Berb� e, S.M. Jain, s. Wood, E.M. Speller, Z. Li, F.A. Castro, J. R. Durrant, W.C. Tsoi, Organic photovoltaic cells-promising indoor light harvesters for self-sustainable electronics, J. Mater. Chem. 6 (2018) 5618-5625. open in new tab
  17. J. Dagar, S. Castro-Hermosa, g. Lucarelli, F. Cacialli, T.M. Brown, Highly efficient perovskite solar cells for light harvesting under indoor illumination via solution processed SnO 2 /MgO composite electron transport, Nano Energy 49 (2018) 290-299. open in new tab
  18. W. Shockley, H. Queisser, Detailed balance limit of efficiency of p-n junction solar cells, J. Appl. Phys. 32 (2) (1961) 510-518. open in new tab
  19. P. Würfel, Physics of Solar Cells from Principles to New Concepts, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005. open in new tab
  20. A. Luque, S. Hegedus, Handbook of Photovoltaic Science and Engineering, John Wiley & Sons Ltd, England, 2003. open in new tab
  21. C.H. Henry, Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells, J. Appl. Phys. 51 (8) (1980), 4940-4500. open in new tab
  22. Standard Tables for Reference Solar Spectra Irradiances: Direct Normal and Hemispherical on 37 o Tilted Surface, ASTM International G173-03, 2012. Reapproved 2012. open in new tab
  23. S. Rühle, Tabulated values of the Shockley-Queisser limit for single junction solar cells, Sol. Energy 130 (2016) 139-147. open in new tab
  24. A.S. Teran, J. Wong, W. Lim, G. Kim, Y. Lee, D. Blaauw, J.D. Phillips, AlGaAs photovoltaic for indoor energy harvesting in mm-scale wireless sensor nodes, IEEE Trans. Electron Devices 62 (7) (2015) 2170-2175. open in new tab
  25. C. Burattini, B. Mattoni, F. Bisegna, The impact of spectra composition of while LEDs on spinach (Spinacia oleracea) growth and development, Energies 20 (2017), 1383-14. open in new tab
  26. E.F. Schubert, Light-Emitting Diodes, Cambridge University Press, New York, 2006. open in new tab
  27. R. Marczy� nski, J. Szostak, R. Signerski, G. Jarosz, Photovoltaic effect in the single- junction DBP/PTCBI organic system under low intensity of monochromatic light, Curr. Appl. Phys. 19 (2019) 1271-1275. open in new tab
  28. P.K. Nayak, G. Garcia-Belmonte, A. Kahn, J. Bisquert, D. Cahen, Photovoltaic efficiency limits and material disorder, Energy Environ. Sci. 5 (2012) 6022-6039. open in new tab
  29. S. Pouladi, M. Asadirad, S.K. Oh, S. Shervin, J. Chen, W. Wang, C.-N. Manh, R. Choi, J. Kim, D. Khatiwada, M. Rathi, P. Dutta, V. Selvamanickam, J.-H. Ryou, Effects of grain boundaries on conversion efficiencies of single-crystal-like GaAs thin-film solar cells on flexible metal tapes, Sol. Energy Mater. Sol. Cells 199 (2019) 122-128. open in new tab
  30. T.K. Todorov, S. Singh, D.M. Bishop, O. Gunawan, Y.S. Lee, T.S. Gershon, K. W. Brew, P.D. Antunez, R. Haight, Ultrathin high band gap solar cells with improved efficiencies from the world's oldest photovoltaic material, Nat. Commun. 8 (2017) 682-688. open in new tab
  31. M.A. Green, H. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.Y. Ho- Baillie, Solar cell efficiency tables (Version 53), Prog. Photovolt. Res. Appl. 27 (2019) 3-12. open in new tab
  32. Y.-C. Liu, H.-H. chou, F.-Y. Ho, H.-J. Wei, T.-C. Wei, C.-Y. Yeh, A feasible scalable porphyrin due for dye-sensitized solar cells under one sun and dim light environments, J. Mater. Chem. 4 (2016) 11878-11887. open in new tab
  33. H. Yin, J.K.W. Ho, S.H. Cheung, R.J. Yan, K. Lok Chiu, X. Hao, S.K. So, Designing a ternary photovoltaic cell for indoor light harvesting with a power conversion efficiency exceeding 20%, J. Mater. Chem. A 6 (2018) 8579-8585. open in new tab
  34. H.K.H. Lee, J. Barb� e, S.M.P. Meroni, T. Du, C.-T. Lin, A. Pockett, J. Troughton, S. M. Jain, F. De Rossi, J. Baker, M.J. Carni, M.A. McLachlan, T.M. Watson, J. R. Durrant, W.C. Tsoi, Outstanding indoor performance of perovskite photovoltaic cells -effect of device architectures and interlayers, Solar RRL 3 (2013), 1800207- 7. open in new tab
Verified by:
Gdańsk University of Technology

seen 375 times

Recommended for you

Meta Tags