Effectiveness of toluene separation from gas phase using supported ammonium ionic liquid membrane - Publication - Bridge of Knowledge

Search

Effectiveness of toluene separation from gas phase using supported ammonium ionic liquid membrane

Abstract

Ammonium ionic liquids (ILs) are relatively cheap in synthesis and environmentally benign and despite that they have been very rarely used in gas separation. In this research we used several ammonium ILs as liquid membranes for removal of residual toluene from gas phase. Ionic liquids used in this study were composed of bis(trifluoromethylsulfonyl)imide anion [Tf2N] and trimethylbutylammonium [N1114], trietylbutylammonium [N2224], trietylhexylammonium [N2226], trietyloctylammonium [N2228] cations. Selected ILs formed stable membranes with limited swelling effect and good performance. The highest toluene permeability was recorded for [N2228][Tf2N] of 2666 barrers and for triethyl based ILs it was decreasing with carbon atoms number. The selectivity of toluene/N2 separation was in a range of 29 to 120. For better process illustration, the factors influencing the permeation process, namely viscosity and partition coefficients were examined.

Citations

  • 5

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Cite as

Full text

download paper
downloaded 40 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
CHEMICAL ENGINEERING SCIENCE no. 219,
ISSN: 0009-2509
Language:
English
Publication year:
2020
Bibliographic description:
Cichowska-Kopczyńska I., Aranowski R.: Effectiveness of toluene separation from gas phase using supported ammonium ionic liquid membrane// CHEMICAL ENGINEERING SCIENCE -Vol. 219, (2020), s.115605-
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.ces.2020.115605
Bibliography: test
  1. M.J. Earle, K.R. Seddon, Ionic liquids. Green solvents for the future, Pure Appl. Chem. 72 (2007) 1391-1398. doi:10.1351/pac200072071391. open in new tab
  2. J.G. Huddleston, H.D. Willauer, R.P. Swatloski, A.E. Visser, R.D. Rogers, Room temperature ionic liquids as novel media for 'clean' liquid-liquid extraction -Chemical Communications (RSC Publishing), Chem. Commun. (1998) 1765-1766. open in new tab
  3. C.P. Fredlacke, J.M. Crosthwaite, D.G. Hert, S. Aki, J.F. Brennecke, Thermophysical Properties of Imidazolium-Based ionic Liquids, J. Chem. Eng. Data. 49 (2004) 954-964. open in new tab
  4. U. Domańska, M. Wlazło, Z. Dąbrowski, A. Wiśniewska, Ammonium ionic liquids in separation of water/butan-1-ol using liquid-liquid equilibrium diagrams in ternary systems, Fluid Phase Equilib. 485 (2019) 23-31. doi:10.1016/J.FLUID.2018.12.009. open in new tab
  5. U. Domańska, M. Karpińska, A. Wiśniewska, Z. Dąbrowski, Ammonium ionic liquids in extraction of bio-butan-1-ol from water phase using activity coefficients at infinite dilution, Fluid Phase Equilib. 479 (2019) 9-16. doi:10.1016/J.FLUID.2018.09.024. open in new tab
  6. M. Królikowski, M. Królikowska, C. Wiśniewski, Separation of aliphatic from aromatic hydrocarbons and sulphur compounds from fuel based on measurements of activity coefficients at infinite dilution for organic solutes and water in the ionic liquid N,N-diethyl-N-methyl-N-(2- methoxy-ethyl)ammonium bis(trifluoromethylsulfonyl)imide, J. Chem. Thermodyn. 103 (2016) 115-124. doi:10.1016/J.JCT.2016.07.017. open in new tab
  7. E. Elhaj, H. Wang, Y. Gu, Functionalized quaternary ammonium salt ionic liquids (FQAILs) as an economic and efficient catalyst for synthesis of glycerol carbonate from glycerol and dimethyl carbonate, Mol. Catal. 468 (2019) 19-28. doi:10.1016/J.MCAT.2019.02.005. open in new tab
  8. I. Cichowska-Kopczynska, M. Joskowska, R. Aranowski, Wetting processes in supported ionic liquid membranes technology, Physicochem. Probl. Miner. Process. 50 (2014). doi:10.5277/ppmp140131. open in new tab
  9. M.E. Zakrzewska, A.A. Rosatella, S.P. Simeonov, C.A.M. Afonso, V. Najdanovic-Visak, M. Nunes da Ponte, Solubility of carbon dioxide in ammonium based CO2-induced ionic liquids, Fluid Phase Equilib. 354 (2013) 19-23. doi:10.1016/J.FLUID.2013.06.011. open in new tab
  10. X. Yuan, S. Zhang, J. Liu, X. Lu, Solubilities of CO2 in hydroxyl ammonium ionic liquids at elevated pressures, Fluid Phase Equilib. 257 (2007) 195-200. doi:10.1016/J.FLUID.2007.01.031. open in new tab
  11. F. Nkinahamira, T. Su, Y. Xie, G. Ma, H. Wang, J. Li, High pressure adsorption of CO2 on MCM- 41 grafted with quaternary ammonium ionic liquids, Chem. Eng. J. 326 (2017) 831-838. doi:10.1016/J.CEJ.2017.05.173. open in new tab
  12. M.S. Manic, A.J. Queimada, E.A. Macedo, V. Najdanovic-Visak, High-pressure solubilities of carbon dioxide in ionic liquids based on bis(trifluoromethylsulfonyl)imide and chloride, J. Supercrit. Fluids. 65 (2012) 1-10. doi:10.1016/J.SUPFLU.2012.02.016. open in new tab
  13. J. Jacquemin, P. Husson, V. Majer, M.F. Costa Gomes, Influence of the cation on the solubility of CO2 and H2 in ionic liquids based on the bis(trifluoromethylsulfonyl)imide anion, J. Solution Chem. 36 (2007) 967-979. doi:10.1007/s10953-007-9159-9. open in new tab
  14. H.R. Cascon, S.K. Choudhari, 1-Butanol pervaporation performance and intrinsic stability of phosphonium and ammonium ionic liquid-based supported liquid membranes, J. Memb. Sci. 429 (2013) 214-224. doi:10.1016/J.MEMSCI.2012.11.028. open in new tab
  15. H.R. Cascon, S.K. Choudhari, G.M. Nisola, E.L. Vivas, D.-J. Lee, W.-J. Chung, Partitioning of butanol and other fermentation broth components in phosphonium and ammonium-based ionic liquids and their toxicity to solventogenic clostridia, Sep. Purif. Technol. 78 (2011) 164-174. doi:10.1016/J.SEPPUR.2011.01.041. open in new tab
  16. P. Reddy, K.J. Chiyen, N. Deenadayalu, D. Ramjugernath, Determination of activity coefficients at infinite dilution of water and organic solutes (polar and non-polar) in the Ammoeng 100 ionic liquid at T = (308.15, 313.5, 323.15, and 333.15) K, J. Chem. Thermodyn. 43 (2011) 1178-1184. doi:10.1016/J.JCT.2011.03.001. open in new tab
  17. R.L. Wolfrom, S. Chander, R. Hogg, Evaluation of capillary rise methods fordetermining wettability of powders, Miner. Metall. Process. 19 (2002) 198-202. open in new tab
  18. M. Matsumoto, K. Ueba, K. Kondo, Vapor permeation of hydrocarbons through supported liquid membranes based on ionic liquids, Desalination. 241 (2009) 365-371. doi:10.1016/J.DESAL.2007.11.090. open in new tab
  19. U. Domańska, A. Pobudkowska, M. Królikowski, Separation of aromatic hydrocarbons from alkanes using ammonium ionic liquid C2NTf2 at T = 298.15 K, Fluid Phase Equilib. 259 (2007) 173-179. doi:10.1016/J.FLUID.2007.06.025. open in new tab
  20. A. Panigrahi, S.R. Pilli, K. Mohanty, Selective separation of Bisphenol A from aqueous solution using supported ionic liquid membrane, Sep. Purif. Technol. 107 (2013) 70-78. doi:10.1016/J.SEPPUR.2013.01.020. open in new tab
  21. H. Walczyk, Niskotemperaturowa kondensacja lotnych związków organicznych w obecności gazu inertnego w spiralnym wymienniku ciepła, Pr. Nauk. Inst. Inżynierii Chem. PAN. 6 (2006) 7-127.
  22. P.R. Danesi, L. Reichley-Yinger, P.G. Rickert, Lifetime of supported liquid membranes: the influence of interfacial properties, chemical composition and water transport on the long-term stability of the membranes, J. Memb. Sci. 31 (1987) 117-145. open in new tab
  23. A.M. Neplenbroek, D. Bargeman, C.A. Smolders, Supported liquid membranes: stabilization by gelation, J. Memb. Sci. 67 (1992) 149-165. doi:10.1016/0376-7388(92)80022-C. open in new tab
  24. M. Teramoto, Y. Sakaida, S.S. Fu, N. Ohnishi, H. Matsuyama, T. Maki, T. Fukui, K. Arai, An attempt for the stabilization of supported liquid membrane, Sep. Purif. Technol. (2000). doi:10.1016/S1383-5866(00)00197-0. open in new tab
  25. M. Zubielewicz Kamińska-Tarnawska, E., Wpływ farb na czystośc powietrza atmosferycznego. Lotne substancje organicze (VOC). Legislacja i oznaczanie, Przem. Chem. 84 (2005) 151-155.
  26. M. Joskowska, I. Kopczynska, B. Debski, D. Holownia-Kedzia, R. Aranowski, J. Hupka, Wetting of supports by ionic liquids used in gas separation processes, Physicochem. Probl. Miner. Process. 48 (2012) 129-140.
  27. Q. Gan, D. Rooney, H. Xue, G. Thompson, Y. Zou, An experimental study of gas transport and separation properties of ionic liquids supported on nanofiltration membranes, J. Memb. Sci. 280 (2006) 948-956. open in new tab
  28. Q. Gan, D. Rooney, Y. Zou, Supported ionic liquid membranes in nanopore structure for gas separation and transport studies, Desalination. 199 (2006) 535-537. open in new tab
  29. B.C. Lee, S.L. Outcalt, Solubilities of gases in the Ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, J. Chem. Eng. Data. 51 (2006) 892-897. open in new tab
  30. A. Uyanik, N. Tinkiliç, Preparing Accurate Standard Gas Mixtures of Volatile Substances at Low Concentration Levels, 4171 (1999) 141-142. open in new tab
  31. W.I. Sohn, D.H. Ryu, S.J. Oh, J.K. Koo, A study on the development of composite membranes for the separation of organic vapors, J. Memb. Sci. 175 (2000) 163-170. open in new tab
  32. I. Cichowska-Kopczyńska, M. Joskowska, B. Debski, R. Aranowski, J. Hupka, Separation of toluene from gas phase using supported imidazolium ionic liquid membrane, J. Memb. Sci. 566 (2018) 367-373. doi:10.1016/J.MEMSCI.2018.08.058. open in new tab
  33. R. Fortunato, C.A.M. Afonso, A.M. Reis, J.G. Crespo, Supported liquid membranes using ionic liquids:study of stability and transport mechanisms, J. Memb. Sci. 242 (2004) 197-209. open in new tab
  34. R. Fortunato, C.A.M. Afonso, J. Benavente, E. Rodriguez-Castellón, J.G. Crespo, Stability of supported ionic liquid membranes as studied by X-ray photoelectron spectroscopy , J. Memb. Sci. 256 (2005) 216-233. open in new tab
  35. F. Hernandez-Fernandez, A. de los Rios, F. Tomas-Alonso, J. Palacios, G. Villora, Preparation of supported ionic liquid membrane: Influence of the ionic liquid immobilization method on their operational stability, J. Memb. Sci. 341 (2009) 172-177. open in new tab
  36. M. Dakkach, F.Μ. Gaciño, M.J.G. Guimarey, S.K. Mylona, X. Paredes, M.J.P. Comuñas, J. Fernández, M.J. Assael, Viscosity-pressure dependence for nanostructured ionic liquids. Experimental values for butyltrimethylammonium and 1-butyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide, J. Chem. Thermodyn. 121 (2018) 27-38. doi:10.1016/J.JCT.2018.01.025. open in new tab
  37. A. Bhattacharjee, A. Luís, J.A. Lopes-da-silva, M.G. Freire, J. Pedro, Thermophysical properties of sulfonium-and ammonium-based ionic liquids, Fluid Phase Equilib. 958 (2014) 36-45. doi:10.1016/j.fluid.2014.08.005.Thermophysical. open in new tab
  38. K. MacHanová, A. Boisset, Z. Sedláková, M. Anouti, M. Bendová, J. Jacquemin, Thermophysical properties of ammonium-based bis{(trifluoromethyl)sulfonyl} imide ionic liquids: Volumetric and transport properties, J. Chem. Eng. Data. 57 (2012) 2227-2235. doi:10.1021/je300108z. open in new tab
  39. J. Sun, M. Forsyth, D.R. MacFarlane, Room-temperature molten salts based on the quaternary ammonium ion, J. Phys. Chem. B. 102 (1998) 8858-8864. doi:10.1021/jp981159p. open in new tab
  40. V. V. Teplyakov, A.Y. Okunev, N.I. Laguntsov, Computer design of recycle membrane contactor doi:10.1016/j.seppur.2006.06.002. open in new tab
  41. J.O. Valderrama, L.F. Cardona, R.E. Rojas, Correlation and prediction of ionic liquid viscosity using Valderrama-Patel-Teja cubic equation of state and the geometric similitude concept. Part I: Pure ionic liquids, Fluid Phase Equilib. 497 (2019) 164-177. doi:10.1016/J.FLUID.2019.04.031. open in new tab
  42. P.F. Requejo, I. Díaz, E.J. González, Á. Domínguez, Mutual solubility of aromatic hydrocarbons in pyrrolidinium and ammonium-based ionic liquids and its modeling using the Cubic-Plus- Association (CPA) Equation of State, J. Chem. Eng. Data. 62 (2017) 633-642. doi:10.1021/acs.jced.6b00655. open in new tab
  43. A. Finotello, J.E. Bara, D. Camper, R.D. Noble, Room-temperature ionic liquids: Temperature dependence of gas solubility selectivity, Ind. Eng. Chem. Res. 47 (2008) 3453-3459. doi:10.1021/ie0704142. open in new tab
  44. J. Jacquemin, P. Husson, V. Majer, M.F.C. Gomes, Low-pressure solubilities and thermodynamics of solvation of eight gases in 1-butyl-3-methylimidazolium hexafluorophosphate, Fluid Phase Equilib. 240 (2006) 87-95. doi:10.1016/j.fluid.2005.12.003. open in new tab
  45. J. Jacquemin, M.F. Costa Gomes, P. Husson, V. Majer, Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3- methylimidazolium tetrafluoroborate between temperatures 283 K and 343 K and at pressures close to atmospheric, J. Chem. Thermodyn. 38 (2006) 490-502. doi:10.1016/j.jct.2005.07.002. open in new tab
  46. P.S. Kulkarni, L.C. Branco, J.G. Crespo, C.A.M. Afonso, A comparative study on absorption and selectivity of organic vapors by using ionic liquids based on imidazolium, quaternary ammonium, and guanidinium cations, Chem. -A Eur. J. 13 (2007) 8470-8477. doi:10.1002/chem.200700160. open in new tab
  47. R.Y.M. Huang, X. Feng, Estimation of activation energy for permeation in pervaporation processes, J. Memb. Sci. 118 (1996) 127-131. doi:10.1016/0376-7388(96)00096-8. open in new tab
  48. P. Izak, S. Hovorka, T. Bartovsky, L. Bartovska, J. Crespo, Swelling of polymeric membranes in roomtemperature ionic liquids, J. Memb. Sci. 296 (2007) 131-138. open in new tab
  49. H. Tokuda, S. Tsuzuki, M.A.B.H. Susan, K. Hayamizu, M. Watanabe, How ionic are room- temperature ionic liquids? An indicator of the physicochemical properties, J. Phys. Chem. B. 110 (2006) 19593-19600. doi:10.1021/jp064159v. open in new tab
  50. M.H. Ghatee, M. Bahrami, N. Khanjari, Measurement and study of density, surface tension, and viscosity of quaternary ammonium-based ionic liquids ([N222(n)]Tf2N), J. Chem. Thermodyn. 65 (2013) 42-52. doi:10.1016/J.JCT.2013.05.031. open in new tab
Verified by:
Gdańsk University of Technology

seen 136 times

Recommended for you

Meta Tags