ELECTRICAL CONDUCTIVITY AND pH IN SURFACE WATER AS TOOL FOR IDENTIFICATION OF CHEMICAL DIVERSITY - Publication - Bridge of Knowledge

Search

ELECTRICAL CONDUCTIVITY AND pH IN SURFACE WATER AS TOOL FOR IDENTIFICATION OF CHEMICAL DIVERSITY

Abstract

In the present study, the creeks and lakes located at the western shore of Admiralty Bay were analysed. The impact of various sources of water supply was considered, based on the parameters of temperature, pH and specific electrolytic conductivity (SEC25). All measurements were conducted during a field campaign in January-February 2017. A multivariate dataset was also created and a biplot of SEC25 and pH of the investigated waters was performed. The average temperatures of the investigated waters were 0.10-8.10 °C. The pH values indicate that most of the water environments of the analysed area are slightly acidic to alkaline (5.26-8.50) with two exceptions: Siodlo II Creek (9.26) and Petrified Forest Creek (8.95), which are characterised by greater alkalinity. At the measurement points closest to the Baranowski Glacier and Ecology Glacier, SEC25 values were the lowest (26.8-61.1 μS·cm–1), while the remaining values ranged from 79.0 to 382 μS·cm–1 for the whole studied area. Based on the results it is concluded that the periodic intensive inflow of ablation waters, combined with morphological changes in the glacier front, causes a significant variability in the outflow network, creating the conditions for changes in basic physicochemical parameters. Moreover, it is observed that local depressions in the terrain form sedimentation traps in which, alongside fine-grained deposits, compounds can accumulate that originate from in situ sedimentation and that are also associated with surface runoff from the melting of snow cover, buried ice and permafrost.

Citations

  • 3

    CrossRef

  • 0

    Web of Science

  • 3

    Scopus

Cite as

Full text

download paper
downloaded 96 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Ecological Chemistry and Engineering S - Chemia i Inżynieria Ekologiczna S no. 27, pages 95 - 111,
ISSN: 1898-6196
Language:
English
Publication year:
2020
Bibliographic description:
Potapowicz J., Szumińska D., Szopińska M., Sebastian C., Polkowska Ż.: ELECTRICAL CONDUCTIVITY AND pH IN SURFACE WATER AS TOOL FOR IDENTIFICATION OF CHEMICAL DIVERSITY// Ecological Chemistry and Engineering S-Chemia I Inzynieria Ekologiczna S -Vol. 27,iss. 1 (2020), s.95-111
DOI:
Digital Object Identifier (open in new tab) 10.2478/eces-2020-0006
Bibliography: test
  1. Mink S, Lopez-Martinez J, Maestro A, Garrote J, Ortega JA, Serrano E, et al. Insights into deglaciation of the largest ice-free area in the South Shetland Islands (Antarctica) from quantitative analysis of the drainage system. Geomorphology. 2014;225:4-24. DOI: 10.1016/j.geomorph.2014.03.028. open in new tab
  2. Fountain AG, Levy JS, Gooseff MN, Van Horn D. The McMurdo Dry Valleys: A landscape on the threshold of change. Geomorphology. 2014;225:25-35. DOI: 10.1016/j.geomorph.2014.03.044. open in new tab
  3. Oliva M, Ruiz-Fernández J. Coupling patterns between para-glacial and permafrost degradation responses in Antarctica. Earth Surf. Process. Landforms. 2015;40:1227-38. DOI: 10.1002/esp.3716. open in new tab
  4. Oliva M, Ruiz-Fernández J. Geomorphological processes and frozen ground conditions in Elephant Point (Livingston Island, South Shetland Islands, Antarctica). Geomorphology. 2017;293:368-79. DOI: 10.1016/j.geomorph.2016.01.020. open in new tab
  5. Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, et al. Recent rapid regional climate warming on the Antarctic Peninsula. Climatic Change. 2003;60:243-74. DOI: 10.1023/A:1026021217991. open in new tab
  6. Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, et al. Antarctic climate change during the last 50 years. Int J Climatol. 2005;25:279-94. DOI: 10.1002/joc.1130. open in new tab
  7. Oliva M, Pereira P, Ruiz-Fernández J, Nieuwendam A. Recent advances in the study of active layer thermal regime and seasonal frost dynamics in cold climate environments. Catena. 2017;149:515-8. DOI: 10.1016/j.catena.2016.08.030. open in new tab
  8. Mulvaney R, Abram NJ, Hindmarsh RCA, Arrowsmith C, Fleet L, Triest J, et al. Recent Antarctic Peninsula warming relative to holocene climate and ice-shelf history. Nature. 2012;489:141-5. DOI: 10.1038/nature11391. open in new tab
  9. Bockheim J, Vieira G, Ramos M, López-Martínez J, Serrano E, Guglielmin M, et al. Climate warming and permafrost dynamics in the Antarctic Peninsula region. Glob Planet Change. 2013;100:215-23. DOI: 10.1016/j.gloplacha.2012.10.018. open in new tab
  10. Kejna M, Araźny A, Sobota I. Climatic change on King George Island in the years 1948-2011. Pol Polar Res. 2013;34(2):213-35. DOI: 10.2478/popore-2013-0004. open in new tab
  11. Birkenmajer K. Retreat of Ecology Glacier, Admiralty Bay, King George Island (South Shetland Islands, West Antarctica) 1956-2001. Bull Polish Acad Sci. 2002;50(1):15-29.
  12. Cook A, Fox A, Vaughan D, Ferrigno J. Retreating glacier fronts on the Antarctic Peninsula over the past half-century. Science. 2005;308(5721):541-4. DOI: 10.1126/science.1104235. open in new tab
  13. Rückamp M, Braun M, Suckro S, Blindow N. Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Glob Planet Change. 2011;79:99-109. DOI: 10.1016/j.gloplacha.2011.06.009. open in new tab
  14. Pętlicki M, Sziło J, Macdonell S, Vivero S, Bialik RJ. Recent deceleration of the ice elevation change of ecology glacier (King George Island, Antarctica). Remote Sensing. 2017;9(6):520. DOI: 10.3390/rs9060520. open in new tab
  15. Szilo J, Bialik RJ. Bedload transport in two creeks at the ice-free area of the Baranowski Glacier (King George Island, West Antarctica). Pol Polar Res. 2017;38(1):21-39. DOI: 10.1515/popore-2017-0003. open in new tab
  16. Hawes I, Brazier P. Freshwater stream ecosystems of James Ross Island, Antarctica. Antarct Sci. 1991;3:265-71. DOI: 10.1017/S0954102091000329. open in new tab
  17. Wojtuń B, Fabiszewski J. Chemical properties of freshwater environment at the Admiralty Bay region (West Antarctica). Polish Polar Stud. XXVI Polar Symp. Lublin. 1999;393-9.
  18. Juchnowicz-Bierbasz M. Year-round changes of nutrients in fresh water bodies near Arctowski Station (South Shetland Islands, Antarctica). Pol Polar Res. 1999;20:243-58.
  19. Toro M, Camacho A, Rochera C, Rico E, Baňon M, Fernandez-Valiente E, et al. Limnological characteristics of the freshwater ecosystems of Byers Peninsula, Livingston Island, in Maritime Antarctic. Polar Biol. 2007;30(5):635-49. DOI: 10.1007/s00300-006-0223-5. open in new tab
  20. Nędzarek A, Pociecha A. Limnological characterization of freshwater systems of the Thomas Point Oasis (Admiralty Bay, King George Island, West Antarctica). Polar Sci. 2010;4(3):457-67. DOI: 10.1016/j.polar.2010.05.008. open in new tab
  21. Nędzarek A, Tórz A, Drost A. Selected elements in surface waters of Antarctica and their relations with the natural environment. Polar Res. 2014;33:21417. DOI: 10.3402/polar.v33.21417. open in new tab
  22. Nędzarek A, Tórz A, Podlasińska J. Ionic composition of terrestrial surface waters in Maritime Antarctic and the processes involved in formation. Antarct Sci. 2015;27(2):150-61. DOI: 10.1017/S0954102014000522. open in new tab
  23. Zwoliński Z, Kejna M, Rachlewicz G, Sobota I, Szpikowski J. Solute and sedimentary fluxes on King George Island. In: Beylich AA, Dixon J, Zwoliński Z editors. Source-to-Sink Fluxes in Undisturbed Cold Environments. Cambridge: Cambridge University Press; 2016:213-37. DOI: 10.1017/CBO9781107705791.018. open in new tab
  24. Szopińska M, Namieśnik J, Polkowska Ż. How important is research on pollution levels in Antarctica? Historical approach, difficulties and current trends. Rev Environ Contam Toxicol. 2016;239:79-156. DOI: 10.1007/398_2015_5008. open in new tab
  25. Szopińska M, Szumińska D, Bialik RJ, Chmiel S, Plenzler J, Polkowska Ż. Impact of a newly-formed periglacial environment and other factors on fresh water chemistry at the western shore of Admiralty Bay in the summer of 2016 (King George Island, Maritime Antarctica). Sci Total Environ. 2018;613-614:619-34. DOI: 10.1016/j.scitotenv.2017.09.060. open in new tab
  26. IPCC. Summary for Policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, et al., editors. Climate Change 2013, The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2013:3-29. ISBN: 9781107057991. https://www.ipcc.ch/site/assets/uploads/2018/03/WG1AR5_SummaryVolume_FINAL.pdf. open in new tab
  27. Kroto HW, Zielińska M, Rajfur M, Wacławek M. The climate change crisis? Chem Didact Ecol Metrol. 2016;21(1-2):11-27. DOI: 10.1515/cdem-2016-0001. open in new tab
  28. Simões JC, Bremer UF, Aquino FE, Ferron FA. Morphology and variations of glacial drainage basins in the King George Island ice field, Antarctica. Ann Glaciol. 1999;29:220-4. DOI: 10.3189/172756499781821085. open in new tab
  29. Pudełko R. Two new topographic maps for sites of scientific interest on King George Island, West Antarctica. Polish Polar Res. 2008;29(3):291-7.
  30. López-Martínez J, Serrano E, Schmid T, Mink S, Linés C. Periglacial processes and landforms in the South Shetland Islands (northern Antarctic Peninsula region). Geomorphology. 2012;155-156:62-79. DOI: 10.1016/j.geomorph.2011.12.018. open in new tab
  31. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, et al. Regional Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, et al., editors. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2007:849-940. ISBN: 978 0521 88009-1. https://www.ipcc.ch/report/ar4/wg1/. open in new tab
  32. Turner J, Barrand NE, Bracegirdle TJ, Convey P, Hodgson DA, Jarvis M, et al. Antarctic climate change and the environment -an update. Polar Record. 2014;50(3):237-59. DOI: 10.1017/S0032247413000296. open in new tab
  33. Turner J, Lu H, White I, King JC, Phillips T, Hosking JS, et al. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature. 2016;535:411-5. DOI: 10.1038/nature18645. open in new tab
  34. Oliva M, Navarro F, Hrabáček F, Hernández A, Nývlt D, Pereira P, et al. Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Sci Total Environ. 2017;580:210-23. DOI: 10.1016/j.scitotenv.2016.12.030. open in new tab
  35. Bockheim J, Vieira G, Ramos M, López-Martínez J, Serrano E, Guglielmin M, et al. Climate warming and permafrost dynamics in the Antarctic Peninsula region. Global Planetary Change. 2013;100:215-23. DOI: 10.1016/j.gloplacha.2012.10.018. open in new tab
  36. Birkenmajer K. Admiralty Bay, King George Island (South Shetland Islands, West Antarctica): A geological monograph. Stud Geol Polon. 2003;120(14):5-73. http://www.polish.polar.pan.pl/ppr01/1980_1_029- 054.pdf.
  37. Zwolicki A, Barcikowski M, Barcikowski A, Cymerski M, Stempniewicz L, Convey P. Seabird colony effects on soil properties and vegetation zonation patterns on King George Island, Maritime Antarctic. Polar Biol. 2015;38(10):1645-55. DOI: 10.1007/s00300-015-1730-z. open in new tab
  38. Zwoliński Z. Mobilność materii mineralnej na obszarach paraglacjalnych, Wyspa Króla Jerzego, Antarktyka Zachodnia (The mobility of mineral matter in paraglacial areas, King George Island, Western Antarctica). Poznań: Wyd Naukowe UAM; 2007;74. ISBN: 9788323217244.
  39. Szymczak E. Particle Size Characteristics of Fluvial Suspended Sediment in Proglacial Streams, King George Island, South Shetland Island. IOP Conf. Ser.: Earth Environ. Sci. 2017;95:022015. DOI: 10.1088/1755-1315/95/2/022015. open in new tab
  40. Schaefer CEGR, Santana RM, Simas FNB, Francelino MR, Filho EIF, Albuquerque MA, et al. Geoenvironments from the vicinity of Arctowski Station, Admiralty Bay, King George Island, Antarctica: vulnerability and valuation assessment, U.S. Geological Survey and The National Academies. Short Research Paper 015. 2007:1047. DOI: 10.3133/of2007-1047.srp015. open in new tab
  41. Myrcha A, Pietr SJ, Tatur A. The role of pygoscelid penguin rookeries in nutrient cycles at Admiralty Bay, King George Island. In: Siegfried WR, Condy PR, Laws RM. editors. Antarctic Nutrient Cycles and Food Webs. Springer Science & Business Media. 2013:156-62. DOI: 10.1007/978-3-642-82275-9_2. open in new tab
  42. Simas FNB, Schaefer CEGR, Michel RFM, Francelino MR, Bockheim JG. Soils of the South Orkney and South Shetland Islands, Antarctica. In: Bockheim JG, editor. The Soils of Antarctica. Springer Switzerland; 2015;227-73. DOI: 10.1007/978-3-319-05497-1_13. open in new tab
  43. Nędzarek A. Sources, diversity and circulation of biogenic compounds in Admiralty Bay, King George Island, Antarctica. Antarct Sci. 2008;20(2):135-45. DOI: 10.1017/S0954102007000909. open in new tab
  44. Zhu RB, Sun LG, Kong DM, Geng JJ, Wang N, Wang Q, et al. Matrix-bound phosphine in Antarctic biosphere. Chemosphere. 2006;64(1):1429-35. DOI: 10.1016/j.chemosphere.2005.12.031. open in new tab
  45. Völkening J, Heumann KG. Determination of heavy metals at the pg/g level in Antarctic snow with DPASV and IDMS. Fresenius Z Anal Chem. 1988;331(2):174-81. DOI: 10.1007/BF01105162. open in new tab
  46. Rose NL, Jones VJ, Noon PE, Hodgson DA, Flower RJ, Appleby PG. Long-range transport of pollutants to the Falkland Islands and Antarctica: Evidence from lake sediment fly ash particle records. Environ Sci Technol. 2012;46(18):9881-9. DOI: 10.1021/es3023013. open in new tab
  47. Kosek K, Kozak K, Kozioł K, Jankowska K, Chmiel S, Polkowska Ż. The interaction between bacterial abundance and selected pollutants concentration levels in an arctic catchment (southwest Spitsbergen, Svalbard). Sci Total Environ. 2018;622-623:913-23. DOI: 10.1016/j.scitotenv.2017.11.342. open in new tab
  48. Lehmann-Konera S, Franczak Ł, Kociuba W, Szumińska D, Chmiel S, Polkowska Ż. Comparison of hydrochemistry and organic compound transport in two non-glaciated high Arctic catchments with a permafrost regime (Bellsund Fjord, Spitsbergen). Sci Total Environ. 2018;613-614:1037-47. DOI: 10.1016/j.scitotenv.2017.09.064. open in new tab
  49. Lehmann-Konera S, Kociuba W, Chmiel S, Franczak Ł, Polkowska Ż. Concentrations and loads of DOC, phenols and aldehydes in a proglacial arctic river in relation to hydro-meteorological conditions. A case study from the southern margin of the Bellsund Fjord -SW Spitsbergen. Catena. 2019;174:117-29. DOI: 10.1016/j.catena.2018.10.049. open in new tab
  50. Keatley BE, Douglas MSV, Smol JP. Evaluating the influence of environmental and spatial variables on diatom spiecies distributions from Melville Island (Canadian High Arctic). Botany. 2008;86:76-90. DOI: 10.1139/B07-118. open in new tab
  51. Westover KS, Moser KA, Porinchu DF, MacDonald GM, Wang X. Physical and chemical limnology of a 61-lake transect across mainland Nunavut and southeastern Victoria Island, Central Canadian Arctic. Fundamental and Applied Limnology Archiv für Hydrobiologie. 2009;175/2:93-112. DOI: 10.1127/1863-9135/2009/0175-0093. open in new tab
  52. Cai Y, Guo L, Douglas TA. Temporal variations in organic carbon species and fluxes from the Chena River, Alaska. Limnol Oceanogr. 2008;53(4):1408-19. DOI: 10.2307/40058262. open in new tab
Verified by:
Gdańsk University of Technology

seen 143 times

Recommended for you

Meta Tags