Electrodes criticality: the impact of CRMs in the leachate electrochemical oxidation - Publication - Bridge of Knowledge

Search

Electrodes criticality: the impact of CRMs in the leachate electrochemical oxidation

Abstract

. Landfill leachate possesses high concentrations of ammonia, micropollutants, and heavy metals, and are characterised for low biodegradability. For this reason, conventional treatment technologies may result ineffective for complete pollutant removal. Electrochemical oxidation allows most of the of recalcitrant pollutants to be oxidised effectively within an easy operational and acceptable retention time, without the need to provide additional chemicals, and without producing waste materials. The mineralisation efficiency and electrode durability depend on the nature of the electrode material. The conventionally adopted anodes can contain critical raw materials (CRMs), and are subject to extreme corrosion conditions. CRM-free electrodes, such as carbon and graphite-based, exhibit a lower efficiency, and are subject to faster deactivation, or, as for lead-dioxide-based electrodes, can constitute a hazard due to the release into the effluent of the coating corrosion products. In this study, the relationship between electrode type, CRM content, and the removal efficiencies of organic compounds and ammonium-nitrogen (N-NH4) was investigated. Material criticality was estimated by the supply risk with economic importance indexes reported in the 2017 EU CRM List. The COD and N-NH4 removal efficiencies were obtained from a literature analysis of 25 publications. The results show that, while single and multi-oxide-coated electrodes may contain low amounts of CRM, but with limited efficiency, borondoped diamonds (BDD) may constitute the best compromise in terms of a reduced content of CRM and a high mineralisation efficiency.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 9

    Scopus

Cite as

Full text

download paper
downloaded 45 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Manufacturing Review no. 7, pages 1 - 9,
ISSN: 2265-4224
Language:
English
Publication year:
2020
Bibliographic description:
Pierpaoli M., Rycewicz M., Łuczkiewicz A., Fudala-Książek S., Bogdanowicz R., Ruello M.: Electrodes criticality: the impact of CRMs in the leachate electrochemical oxidation// Manufacturing Review -Vol. 7, (2020), s.1-9
DOI:
Digital Object Identifier (open in new tab) 10.1051/mfreview/2020006
Bibliography: test
  1. S. Fudala-Ksiazek, M. Pierpaoli, E. Kulbat, A. Luczkiewicz, Waste Manag. 49 (2016) 516-529 open in new tab
  2. S. Fudala-Ksiazek, M. Pierpaoli, A. Luczkiewicz, Waste Manag. 64 (2017) 28-38 open in new tab
  3. A. Vlyssides, P. Karlis, M. Loizidou, A. Zorpas, D. Arapoglou, Environ. Technol. 22 (2001) 1467-1476 open in new tab
  4. F. Aloui, F. Fki, S. Loukil, S. Sayadi, Water Sci. Technol. 60 (2009) 605-614 open in new tab
  5. F. Feki, F. Aloui, M. Feki, S. Sayadi, Chemosphere 75 (2009) 256-260 open in new tab
  6. M. Pierpaoli, M. Ficek, M. Rycewicz, M. Sawczak, J. Karczewski, M. Ruello, R. Bogdanowicz, Materials (Basel). 12 (2019) 547 open in new tab
  7. S. Fudala-Ksiazek, M. Sobaszek, A. Luczkiewicz, A. Pieczynska, A. Ofiarska, A. Fiszka-Borzyszkowska, M. Sawczak, M. Ficek, R. Bogdanowicz, E.M. Siedlecka, Chem. Eng. J. 334 (2018) 1074-1084 open in new tab
  8. G.A. Blengini, et al., Methodology for Establishing the EU List of Critical Raw Materials: Guidelines, European Commision, Join Research Centre, Brussels, Belgium, 2017
  9. L.-C. Chiang, J.-E. Chang, T.-C. Wen, Water Res. 29 (1995) 671-678 open in new tab
  10. L.-C. Chiang, J.-E. Chang, C.-T. Chung, Environ. Eng. Sci. 18 (2001) 369-379 open in new tab
  11. R. Cossu, et al., Electrochemical treatment of landfill leachate: oxidation at Ti/PbO 2 and Ti/SnO 2 anodes, Environ. Sci. Technol. 32 (1998) 3570-3573 open in new tab
  12. M. Panizza, C.A. Martinez-Huitle, Chemosphere 90 (2013) 1455-1460 open in new tab
  13. A. Fernandes, D. Santos, M.J. Pacheco, L. Ciríaco, A. Lopes, Appl. Catal. B 148-149 (2014) 288-294 open in new tab
  14. A. Fernandes, D. Santos, M.J. Pacheco, L. Ciríaco, A. Lopes, Sci. Total Environ. 541 (2016) 282-291 open in new tab
  15. P.B. Moraes, R. Bertazzoli, Chemosphere. 58 (2005) 41-46 open in new tab
  16. E. Turro, A. Giannis, R. Cossu, E. Gidarakos, D. Mantzavinos, A. Katsaounis, J. Hazard. Mater. 190 (2011) 460-465 open in new tab
  17. L. Shao, P. He, J. Xue, G. Li, Water Sci. Technol. 53 (2006) 143-150 open in new tab
  18. M.J.K. Bashir, M.H. Isa, S.R.M. Kutty, Z. Bin Awang, H.A. Aziz, S. Mohajeri, I.H. Farooqi, Waste Manag. 29 (2009) 2534-2541 open in new tab
  19. Z.H. Mussa, M.R. Othman, M.P. Abdullah, Electrochemical oxidation of landfill leachate: investigation of operational parameters and kinetics using graphite-PVC composite electrode as anode, J. Braz. Chem. Soc. 26 (2015) 939-948 open in new tab
  20. A. Cabeza, A. Urtiaga, M.-J. Rivero, I. Ortiz, J. Hazard. Mater. 144 (2007) 715-719 open in new tab
  21. A. Anglada, A. Urtiaga, I. Ortiz, Environ. Sci. Technol. 43 (2009) 2035-2040 open in new tab
  22. F.C. Moreira, J. Soler, A. Fonseca, I. Saraiva, R.A.R. Boaventura, E. Brillas, V.J.P. Vilar, Water Res. 81 (2015) 375-387 open in new tab
  23. A. Fernandes, M.J. Pacheco, L. Ciríaco, A. Lopes, J. Hazard. Mater. 199-200 (2012) 82-87 open in new tab
  24. A. Urtiaga, A. Rueda, Á. Anglada, I. Ortiz, J. Hazard. Mater. 166 (2009) 1530-1534 open in new tab
  25. C. Papastavrou, D. Mantzavinos, E. Diamadopoulos, Environ. Technol. 30 (2009) 1547-1553 open in new tab
  26. EC, Study on the review of the list of critical raw materials, 2017. https://doi.org/10.2873/876644 open in new tab
  27. R Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2017, https://www.R-project.org/
  28. H. Wickham, Ggplot2: elegrant graphics for data analysis, n.d. https://ggplot2.tidyverse.org/authors.html (accessed January 21, 2019)
  29. J. Rolewicz, C. Comninellis, E. Plattner, J. Hinden, Electrochim. Acta 33 (1988) 573-580 open in new tab
  30. K.-W. Kim, E.-H. Lee, J.-S. Kim, K.-H. Shin, K.-H. Kim, Electrochim. Acta 46 (2001) 915-921 open in new tab
  31. L. Lipp, D. Pletcher, Electrochim. Acta 42 (1997) 1091-1099 open in new tab
  32. J. Ribeiro, A.R. De Andrade, J. Electrochem. Soc. 151 (2004) 106-112 open in new tab
  33. R.D. Coteiro, F.S. Teruel, J. Ribeiro, A.R. de Andrade, J. Braz. Chem. Soc. 17 (2006) 771-779 open in new tab
  34. M.S. Zafar, M. Tausif, Zia-ul-Haq, M. Ashraf, S. Hussain, Port. Electrochim. Acta 34 (2016) 257-266 open in new tab
  35. L.S. Andrade, L.A.M. Ruotolo, R.C. Rocha-Filho, N. Bocchi, S.R. Biaggio, J. Iniesta, V. García-Garcia, V. Montiel, Chemosphere 66 (2007) 2035-2043 open in new tab
  36. L. Ciríaco, C. Anjo, J. Correia, M.J. Pacheco, A. Lopes, Electrochim. Acta 54 (2009) 1464-1472 open in new tab
  37. H. Xu, Q. Zhang, W. Yan, W. Chu, L. Zhang, Int. J. Electrochem. Sci. 8 (2013) 5382-5395 open in new tab
  38. A.M. Polcaro, S. Palmas, F. Renoldi, M. Mascia, J. Appl. Electrochem. 29 (1999) 147-151 open in new tab
  39. M. Wesselmark, C. Lagergren, G. Lindbergh, Proc. À Electrochem. Soc. PV 2004-18 (2004) 264-275 open in new tab
  40. J.F. Patzer, S.J. Yao, S.K. Wolfson, J. Mol. Catal. 70 (1991) 217-230 open in new tab
  41. S. Fudala-Ksiazek, M. Pierpaoli, A. Luczkiewicz, Waste Manag. 78 (2018) 94-103 open in new tab
  42. A. Anglada, A. Urtiaga, I. Ortiz, J. Chem. Technol. Biotechnol. 84 (2009) 1747-1755 open in new tab
  43. L. Li, Y. Liu, J. Hazard. Mater. 161 (2009) 1010-1016 open in new tab
  44. Cite this article as: Mattia Pierpaoli, Michał Rycewicz, Aneta Łuczkiewicz, Sylwia Fudala-Ksiązek, Robert Bogdanowicz, Maria Letizia Ruello, Electrodes criticality: the impact of CRMs in the leachate electrochemical oxidation, Manufacturing Rev. 7, 7 (2020) open in new tab
Verified by:
Gdańsk University of Technology

seen 122 times

Recommended for you

Meta Tags