Abstract
We synthesized pristine mica (Mica) and N-octadecyl-N’-octadecyl imidazolium iodide (IM) modified mica (Mica-IM), characterized it, and applied it at 0.1–5.0 wt.% loading to prepare epoxy nanocomposites. Dynamic differential scanning calorimetry (DSC) was carried out for the analysis of the cure potential and kinetics of epoxy/Mica and epoxy/Mica-IM curing reaction with amine curing agents at low loading of 0.1 wt.% to avoid particle aggregation. The dimensionless Cure Index (CI) was used for qualitative analysis of epoxy crosslinking in the presence of Mica and Mica-IM, while qualitative cure behavior and kinetics were studied by using isoconversional methods. The results indicated that both Mica and Mica-IM improved the curability of epoxy system from a Poor to Good state when varying the heating rate in the interval of 5–15 °C min−1. The isoconversional methods suggested a lower activation energy for epoxy nanocomposites with respect to the blank epoxy; thus, Mica and Mica-IM improved crosslinking of epoxy. The higher order of autocatalytic reaction for epoxy/Mica-IM was indicative of the role of liquid crystals in the epoxide ring opening. The glass transition temperature for nanocomposites containing Mica and Mica-IM was also lower than the neat epoxy. This means that nanoparticles participated the reaction because of being reactive, which decelerated segmental motion of the epoxy chains. The kinetics of the thermal decomposition were evaluated for the neat and mica incorporated epoxy nanocomposites epoxy with varying Mica and Mica-IM amounts in the system (0.5, 2.0 and 5.0 wt.%) and heating rates. The epoxy/Mica-IM at 2.0 wt.% of nanoparticle showed the highest thermal stability, featured by the maximum value of activation energy devoted to the assigned system. The kinetics of the network formation and network degradation were correlated to demonstrate how molecular-level transformations can be viewed semi-experimentally.
Citations
-
1 2
CrossRef
-
0
Web of Science
-
1 2
Scopus
Authors (7)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/nano11081990
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
Nanomaterials
no. 11,
ISSN: 2079-4991 - Language:
- English
- Publication year:
- 2021
- Bibliographic description:
- Jouyandeh M., Akbari V., Paran S. M. R., Livi S., Lins L., Vahabi H., Saeb M.: Epoxy/Ionic Liquid-Modified Mica Nanocomposites: Network Formation–Network Degradation Correlation// Nanomaterials -Vol. 11,iss. 8 (2021), s.1990-
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/nano11081990
- Verified by:
- Gdańsk University of Technology
seen 125 times
Recommended for you
Kinetics of Cross-Linking Reaction of Epoxy Resin with Hydroxyapatite-Functionalized Layered Double Hydroxides
- Z. Karami,
- M. Ganjali,
- M. Zarghamidehaghani
- + 9 authors
Bulk-Surface Modification of Nanoparticles for Developing Highly-Crosslinked Polymer Nanocomposites
- M. Jouyandeh,
- M. Ganjali,
- M. Aghazadeh
- + 3 authors
In-Out Surface Modification of Halloysite Nanotubes (HNTs) for Excellent Cure of Epoxy: Chemistry and Kinetics Modeling
- S. Moghari,
- S. H. Jafari,
- M. K. Yazdi
- + 4 authors
Effect of Surface Treatment of Halloysite Nanotubes (HNTs) on the Kinetics of Epoxy Resin Cure with Amines
- V. Akbari,
- M. Jouyandeh,
- S. Paran
- + 9 authors