Evaluation of Asphalt Mixture Low-Temperature Performance in Bending Beam Creep Test - Publication - Bridge of Knowledge

Search

Evaluation of Asphalt Mixture Low-Temperature Performance in Bending Beam Creep Test

Abstract

Low-temperature cracking is one of the most common road pavement distress types in Poland. While bitumen performance can be evaluated in detail using bending beam rheometer (BBR) or dynamic shear rheometer (DSR) tests, none of the normalized test methods gives a comprehensive representation of low-temperature performance of the asphalt mixtures. This article presents the Bending Beam Creep test performed at temperatures from −20 °C to +10 °C in order to evaluate the low-temperature performance of asphalt mixtures. Both validation of the method and its utilization for the assessment of eight types of wearing courses commonly used in Poland were described. The performed test indicated that the source of bitumen and its production process (and not necessarily only bitumen penetration) had a significant impact on the low-temperature performance of the asphalt mixtures, comparable to the impact of binder modification (neat, polymer-modified, highly modified) and the aggregate skeleton used in the mixture (Stone Mastic Asphalt (SMA) vs. Asphalt Concrete (AC)). Obtained Bending Beam Creep test results were compared with the BBR bitumen test. Regression analysis confirmed that performing solely bitumen tests is insufficient for comprehensive low-temperature performance analysis.

Citations

  • 5 2

    CrossRef

  • 0

    Web of Science

  • 5 6

    Scopus

Cite as

Full text

download paper
downloaded 105 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Materials no. 11, edition 1, pages 1 - 21,
ISSN: 1996-1944
Language:
English
Publication year:
2018
Bibliographic description:
Pszczoła M., Jaczewski M., Ryś D., Jaskuła P., Szydłowski C.: Evaluation of Asphalt Mixture Low-Temperature Performance in Bending Beam Creep Test// Materials. -Vol. 11, iss. 1 (2018), s.1-21
DOI:
Digital Object Identifier (open in new tab) 10.3390/ma11010100
Bibliography: test
  1. Marasteanu, M.; Zofka, A.; Turos, M.; Li, X.; Velasquez, R.; Xue, L.; Buttlar, W.; Paulino, G.; Braham, A.; Dave, E.; et al. Investigation of Low Temperature Cracking in Asphalt Pavements. A Transportation Pooled Fund Study; Report No MN/RC 2007-43; University of Minnesota: Minneapolis, MN, USA, 2007.
  2. Marasteanu, M.; Buttlar, W.; Bahia, H.; Williams, C. Investigation of Low Temperature Cracking in Asphalt Pavements, National Pooled Fund Study-Phase II; Report No MN/RC 2012-23; University of Minnesota: Minneapolis, MN, USA, 2012.
  3. Vinson, T.S.; Janoo, V.C. Low Temperature and Thermal Fatigue Cracking; Summary Report No SR-OSU-A-003A-89-1; University of California: Berkeley, CA, USA, 1989. open in new tab
  4. Herb, W.; Velasquez, R.; Stefan, H.; Marasteanu, M.O.; Clyne, T. Simulation and Characterization of Asphalt Pavement Temperatures. Road Mater. Pavement 2009, 10, 233-247. [CrossRef] open in new tab
  5. Pszczoła, M.; Judycki, J.; Ryś, D. Evaluation of pavement temperatures in Poland during winter conditions. Transp. Res. Proc. 2016, 14, 738-747. [CrossRef] open in new tab
  6. Pucci, T.; Dumont, A.-G.; Di Benedetto, H. Thermomechanical and Mechanical Behaviour of Asphalt Mixtures at Cold Temperature: Road and Laboratory Investigations. Road Mater. Pavement 2004, 5, 45-72. [CrossRef] open in new tab
  7. Rys, D.; Judycki, J.; Pszczola, M.; Jaczewski, M.; Melun, L. Comparison of low-temperature cracks intensity on pavements with high modulus asphalt concrete and conventional asphalt concrete bases. Constr. Build. Mater. 2017, 147, 478-487. [CrossRef] open in new tab
  8. Jackson, N.M. Analysis of Thermal Fatigue Distress of Asphalt Concrete Pavements. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 1992; p. 188. open in new tab
  9. Wang, T.; Su, L.; Zhai, J. A case study on diurnal and seasonal variation in pavement temperature. Int. J. Pavement Eng. 2014, 15, 402-408. [CrossRef] open in new tab
  10. Judycki, J. A new viscoelastic method of calculation of low-temperature thermal stresses in asphalt layers of pavements. Int. J. Pavement Eng. 2016, 19, 24-36. [CrossRef] open in new tab
  11. Judycki, J. Verification of the new viscoelastic method of thermal stress calculation in asphalt layers of pavements. Int. J. Pavement Eng. 2016, 1-13. [CrossRef] open in new tab
  12. Mamlouk, M.S.; Zaniewski, J.P. Materials for Civil and Construction Engineers, 2nd ed.; Pearson Prentice Hall, Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2006; ISBN 0-13-147714-5.
  13. Anderson, D.A.; Christensen, D.W.; Bahia, H.U.; Dongre, R.; Sharma, M.G.; Antle, C.E.; Button, J. Binder Characterization and Evaluation; SHRP A-369; Physical Characterization Strategic Highway Research Program National Research Council: Washington, DC, USA, 1994; Volume 3. open in new tab
  14. American Association of State Highway and Transportation Officials (AASHTO). Standard T313-05, Standard Method of Test for Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR), Standard Specifications for Transportation Materials and Methods of Sampling and Testing, 25th ed.; American Association of State Highway and Transportation Officials (AASHTO): Washington, DC, USA, 2005. open in new tab
  15. American Association of State Highway and Transportation Officials (AASHTO). Standard T314-02, Standard Method of Test for Determining the Fracture Properties of Asphalt Binder in Direct Tension (DT), Standard Specifications for Transportation Materials and Methods of Sampling and Testing, Part 2B: Tests, 22nd ed.; American Association of State Highway and Transportation Officials (AASHTO): Washington, DC, USA, 2002. open in new tab
  16. Zofka, A.; Marasteanu, M.; Li, X.; Clyne, T.; McGraw, J. Simple Method to Obtain Asphalt Binders Low Temperature Properties from Asphalt Mixtures Properties. J. Assoc. Asph. Pav. 2005, 74, 255-282.
  17. Zofka, A.; Marasteanu, M.; Turos, M. Determination of Asphalt Mixture Creep Compliance at Low Temperatures by Using Thin Beam Specimens. J. Transp. Res. Rec. 2008, 2057, 134-139. [CrossRef] open in new tab
  18. Velásquez, R.; Zofka, A.; Turos, M.; Marasteanu, M. Bending Beam Rheometer Testing of Asphalt Mixtures. Int. J. Pavement Eng. 2011, 12, 461-474. [CrossRef] open in new tab
  19. Velásquez, R.; Marasteanu, M.; Turos, M.; Labuz, J. Effect of Beam Size on the Creep Stiffness of Asphalt Mixtures at Low Temperatures. In Proceedings of the 7th International RILEM Symposium ATCBM09 on Advanced Testing and Characterization of Bituminous Materials, Rhodes, Greece, 27-29 May 2009;
  20. Loizos, A., Partl, M., Eds.; CRC Press/Balkema: Boca Raton, FL, USA, 2009; pp. 313-322.
  21. Moon, K.H.; Falchetto, A.C.; Wang, D.; Wistuba, M.P.; Tebaldi, G. Low-temperature performance of recycled asphalt mixtures under static and oscillatory loading. Road Mater. Pavement 2017, 18, 297-314. [CrossRef] open in new tab
  22. Falchetto, A.C.; Moon, K.H.; Wistuba, M.P. An alternative method for computing thermal stress in asphalt mixture: The Laplace transformation. Road Mater. Pavement 2017, 18, 226-240. [CrossRef] open in new tab
  23. Falchetto, A.C.; Moon, K.H.; Wistuba, M.P. Development of a simple correlation between bending beam rheometer and thermal stress restrained specimen test low-temperature properties based on a simplified size effect approach. Road Mater. Pavement 2017, 18, 339-351. [CrossRef] open in new tab
  24. Falchetto, A.C.; Wistuba, M.P.; Marasteanu, M.O. Size effect in asphalt mixture at low temperature: Types I and II. Road Mater. Pavement 2017, 18, 235-257. [CrossRef] open in new tab
  25. Moon, K.H.; Falchetto, A.C.; Hu, J.W. Investigation of asphalt binder and asphalt mixture low temperature creep properties using semi mechanical and analogical models. Constr. Build. Mater. 2014, 53, 568-583. [CrossRef] open in new tab
  26. Zofka, A.; Yut, I. Prediction of asphalt creep compliance using artificial neural networks. Arch. Civ. Eng. 2012, 58, 2. [CrossRef] open in new tab
  27. Ho, C.-H.; González, M.F.M.; Linares, C.P.M. Effect of asphalt thin beams mixed with three nominal maximum aggregate sizes in the bending beam rheometer on the prediction of thermal properties of bituminous material. Front. Struct. Civ. Eng. 2017, 11, 1-7. [CrossRef] open in new tab
  28. Linares, C.P.M.; Ho, C.-H.; González, M.F.M. Impact of Multi-Scale Asphalt Thin Beams in the Bending Beam Rheometer on the Prediction of Thermal Cracking of Bituminous Material. Procedia Eng. 2016, 161, 235-240. [CrossRef] open in new tab
  29. Gong, X.; Romero, P.; Dong, Z.; Li, Y. Investigation on the low temperature property of asphalt fine aggregate matrix and asphalt mixture including the environmental factors. Constr. Build. Mater. 2017, 156, 56-62. [CrossRef] open in new tab
  30. Judycki, J. Bending Test of Asphaltic Mixtures under Statical Loading. In Design and Quality Control of Bituminous Mixes, Proceedings of the 4th International Symposium on the Role of Mechanical Tests for the Characterization, Budapest, Hungary, 23-25 October 1990; Book Series: RILEM Proceedings; open in new tab
  31. Taylor & Francis: Oxfordshire, UK, 1990; Volume 8, pp. 207-227. Materials 2018, 11, 100 20 of 21 open in new tab
  32. Pszczola, M.; Judycki, J. Testing of Low Temperature Behaviour of Asphalt Mixtures in Bending Creep Test. In Proceedings of the 7th International RILEM Symposium ATCBM09 on Advanced Testing and Characterization of Bituminous Materials, Rhodes, Greece, 27-29 May 2009; Loizos, A., Partl, M., Eds.; CRC Press/Balkema: Boca Raton, FL, USA, 2009; pp. 303-312. open in new tab
  33. Yin, A.; Yang, X.; Yang, S.; Jiang, W. Multiscale Fracture Simulation of Three-Point Bending Asphalt Mixture Beam Considering Material Heterogeneity. Eng. Fract. Mech. 2011, 78, 2414-2428. [CrossRef] open in new tab
  34. Chen, Y. Creep Tests and Viscoelastic Analysis of Rubber Asphalt Concrete. In Proceedings of the Seventh International Conference on Traffic and Transportation Studies, Kunming, China, 3-5 August 2010; open in new tab
  35. Jaczewski, M.; Judycki, J.; Jaskuła, P. Modelling of Asphalt Mixes under Long Time Creep at Low Temperatures. Transp. Res. Proc. 2016, 14, 3527-3535. [CrossRef] open in new tab
  36. Falchetto, A.C.; Moon, K.H. Micromechanical-Analogical Modelling of Asphalt Binder and Asphalt Mixture Creep Stiffness Properties at Low Temperature. Road Mater. Pavement 2015, 16, 111-137. [CrossRef] open in new tab
  37. Zhao, L.H.; Chen, J.; Wang, S. Viscoelastic Analysis of Asphalt Mixture Based on Creep Test. Res. J. Appl. Sci. Eng. Techbol. 2013, 5, 819-822. open in new tab
  38. Zhao, L.H. Numerical Simulation of the Bending Creep Test for Asphalt Mixture. Adv. Mat. Res. 2012, 446-449, 2608-2612. [CrossRef] open in new tab
  39. Pszczoła, M.; Jaczewski, M.; Szydłowski, C.; Judycki, J.; Dołżycki, B. Evaluation of Low Temperature Properties of Rubberized Asphalt Mixtures. Procedia Eng. 2017, 172, 897-904. [CrossRef] open in new tab
  40. American Association of State Highway and Transportation Officials (AASHTO). Standard AASHTO R-28, Standard Practice for Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV), Standard Specifications for Transportation Materials and Methods of Sampling and Testing, 25th ed.; American Association of State Highway and Transportation Officials (AASHTO): Washington, DC, USA, 2005. open in new tab
  41. Polish Technical Guidelines WT-2 2014; The General Directorate for National Roads and Motorways: Warsaw, Poland, 2014. open in new tab
  42. American Association of State Highway and Transportation Officials (AASHTO). Standard T313-12, Standard Method of Test for Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR), Standard Specifications for Transportation Materials and Methods of Sampling and Testing, 25th ed.; American Association of State Highway and Transportation Officials (AASHTO): Washington, DC, USA, 2005. open in new tab
  43. Judycki, J.; Pszczola, M.; Jaskula, P. The modification of the bending beam creep test for asphalt mixtures and assesment of their rheological parameters. In Proceedings of the VII International Conference, Durable and Safe Pavement Structures, Kielce, Poland, 8-9 May 2001; pp. 91-100. (In Polish)
  44. Anderson, D.A.; Morasteanu, M.O. Physical hardening of asphalt binders relative to their glass transition temperature. Transp. Res. Rec. 1999, 1661, 27-34. [CrossRef] open in new tab
  45. Hesp, S.A.M.; Iliuta, S.; Shirokoff, J.W. Reversible aging in asphalt binders. Energy Fuel 2007, 21, 1112-1121. [CrossRef] open in new tab
  46. Togunde, O.P.; Hesp, S.A.M. Physical hardening in asphalt mixtures. Int. J. Pavement Res. Technol. 2012, 5, 46-53. [CrossRef] open in new tab
  47. Lu, X.; Isacsson, U. Laboratory study on the low temperature physical hardening of conventional and polymer modified bitumens. Constr. Build. Mater. 2000, 14, 79-88. [CrossRef] open in new tab
  48. Tabatabaee, H.; Mangiafico, S.; Velasquez, R.; Bahia, H.U. Investigation of Low Temperature Cracking in Asph. Pavements; National Pooled Fund Study-Phase II, Task 2, Subtask on Physical Hardening; University of Wisconsin-Madison: Madison, WI, USA, 2010.
  49. Judycki, J. Influence of low-temperature physical hardening on stiffness and tensile strength of asphalt concrete and stone mastic asphalt. Constr. Build. Mater. 2014, 61, 191-199. [CrossRef] open in new tab
  50. Judycki, J. Analysis of Some Rheological Properties of Asphalt Concrete under Static Loads, (In Polish: Analiza Niektórych Właściwości Reologicznych Drogowego Betonu Asfaltowego Poddanego Działaniu Obciążeń Statycznych). Ph.D. Thesis, Gdansk University of Technology, Gdansk, Poland, 1975.
  51. Di Benedetto, H.; Sauzeat, C.; Bilodeau, K.; Buannic, M.; Mangiafico, S.; Nguyen, Q.T.; Pouget, S.; Tapsoba, N.; Van Rompu, J. General overview of the time-temperature superposition principle validity for materials containing bituminous binder. Int. J. Road Airpt. 2011, 1, 35-52. [CrossRef] open in new tab
  52. Judycki, J. Non-linear viscoelastic behaviour of conventional and modified asphaltic concrete under creep. Mater. Struct. 1992, 25, 95-101. [CrossRef] open in new tab
  53. Ferry, J.D. Viscoelastic Properties of Polymers, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1980.
  54. Monismith, C.L.; Alexander, R.L.; Secor, K.E. Rheological Behavior of Asphalt Concrete. J. Assoc. Asph. Pav. 1966, 35, 400-450.
  55. Mitchell, M.R.; Link, R.E.; Zofka, A.; Yut, I. Alternative procedure for determination of hot mix asphalt creep compliance. J. Test. Eval. 2011, 39, 102760. [CrossRef] open in new tab
  56. Marasteanu, M.O.; Anderson, D.A. Improved Model for Bitumens Rheological Characterization. In Proceedings of the Eurobitume Workshop on Performance-Related Properties for Bituminous Binders, Kirchberg, Luxembourg, 3-6 May 1999; Paper No. 133. open in new tab
  57. Mazurek, G. The Viscoelastic Characteristics of the Asphalt Concrete Modified with Different Synthetic Waxes Using a Modified Huet-Sayegh Model. In Proceedings of the 10th International Conference Environmental Engineering, Vilnius, Lithuania, 27-28 April 2017. [CrossRef] open in new tab
  58. Mazurek, G.; Iwanski, M. Modelling of Asphalt Concrete Stiffness in the Linear Viscoelastic Region. In Proceedings of the World Multidisciplinary Civil Engineering-Architecture-Urban Planning Symposium-WMCAUS, Prague, Czech Republic, 12-16 June 2017. [CrossRef] open in new tab
  59. Rowe, G.M.; Sharrock, M.J. Alternate shift factor relationship for describing the temperature dependency of the visco-elastic behaviour of asphalt materials. Transp. Res. Rec. 2011, 2207, 125-135. [CrossRef] open in new tab
  60. Olard, F.; Di Benedetto, H. General "2S2P1D" Model and Relation between the Linear Viscoelastic Behaviours of Bituminous Binders and Mixes. Road Mater. Pavement 2003, 4, 185-224. [CrossRef] open in new tab
  61. © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Verified by:
Gdańsk University of Technology

seen 175 times

Recommended for you

Meta Tags