Evaluation of the Cathodic Electrodeposition Effectiveness of the Hydroxyapatite Layer Used in Surface Modification of Ti6Al4V-Based Biomaterials - Publication - Bridge of Knowledge

Search

Evaluation of the Cathodic Electrodeposition Effectiveness of the Hydroxyapatite Layer Used in Surface Modification of Ti6Al4V-Based Biomaterials

Abstract

The important issue associated with the design and the fabrication of the titanium and titanium alloy implants is the increase of their biointegration with bone tissue. In the presented paper, the research results concerning the conditions used in the cathodic deposition of hydroxyapatite on the surface Ti6Al4V substrates primarily modified by the production of TiO2 nanoporous coatings, TiO2 nanofibers, and titanate coatings, are discussed. Despite excellent biocompatibility with natural bone tissue of materials based on hydroxyapatite (HA), their poor adhesion to the substrate caused the limited use in the implants’ construction. In our works, we have focused on the comparison of the structure, physicochemical, and mechanical properties of coating systems produced at different conditions. For this purpose, scanning electron microscopy images, chemical composition, X-ray diffraction patterns, infrared spectroscopy, wettability, and mechanical properties are analyzed. Our investigations proved that the intermediate titanium oxide coatings presence significantly increases the adhesion between the hydroxyapatite layer and the Ti6Al4V substrate, thus solving the temporary delamination problems of the HA layer.

Citations

  • 8

    CrossRef

  • 0

    Web of Science

  • 6

    Scopus

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Materials no. 15,
ISSN: 1996-1944
Language:
English
Publication year:
2022
Bibliographic description:
Ehlert M., Radtke A., Bartmański M., Piszczek P.: Evaluation of the Cathodic Electrodeposition Effectiveness of the Hydroxyapatite Layer Used in Surface Modification of Ti6Al4V-Based Biomaterials// Materials -Vol. 15,iss. 19 (2022), s.6925-
DOI:
Digital Object Identifier (open in new tab) 10.3390/ma15196925
Sources of funding:
  • Free publication
Verified by:
Gdańsk University of Technology

seen 133 times

Recommended for you

Meta Tags