Expedited Design Closure of Antenna Input Characteristics by Trust Region Gradient Search and Principal Component Analysis - Publication - MOST Wiedzy

Search

Expedited Design Closure of Antenna Input Characteristics by Trust Region Gradient Search and Principal Component Analysis

Abstract

Optimization-based parameter tuning has become an inherent part of contemporary antenna design process. For the sake of reliability, it is typically conducted at the level of full-wave electromagnetic (EM) simulation models. This may incur considerable computational expenses depending on the cost of an individual EM analysis, the number of adjustable variables, the type of task (local, global, single-/multi-objective optimization), and the constraints involved. For these reasons, utilization of conventional algorithms is often impractical. This paper proposes a novel gradient-based algorithm with numerical derivatives for expedited antenna optimization. The improvement of computational efficiency is obtained by employing a rank-one Broyden formula and restricting finite differentiation sensitivity updates to the principal directions of the Jacobian matrix, i.e., those corresponding to the most significant changes of the antenna responses. Comprehensive numerical validation carried out using three wideband antennas indicates that the presented methodology offers considerable savings of sixty percent with respect to the reference trust-region algorithm. At the same time, virtually no degradation of the design quality is observed. Furthermore, algorithm reliability is greatly improved (while offering comparable computational efficiency) over the recent state-of-the-art accelerated gradient-based procedures.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
IEEE Access no. 8, pages 8502 - 8511,
ISSN: 2169-3536
Language:
English
Publication year:
2020
Bibliographic description:
Tomasson J., Kozieł S., Pietrenko-Dąbrowska A.: Expedited Design Closure of Antenna Input Characteristics by Trust Region Gradient Search and Principal Component Analysis// IEEE Access -Vol. 8, (2020), s.8502-8511
DOI:
Digital Object Identifier (open in new tab) 10.1109/access.2020.2964096
Bibliography: test
  1. M. K. Ray, K. Mandal, and N. Nasimuddin, ''Low-profile circularly polarized patch antenna with wide 3 dB beamwidth,'' IEEE Antennas Wireless Propag. Lett., vol. 18, no. 12, pp. 2473-2477, Dec. 2019, doi: 10.1109/lawp.2019.2940703. open in new tab
  2. W.-H. Ng, E.-H. Lim, F.-L. Bong, and B.-K. Chung, ''E-shaped folded- patch antenna with multiple tuning parameters for on-metal UHF RFID tag,'' IEEE Trans. Antennas Propag., vol. 67, no. 1, pp. 56-64, Jan. 2019. open in new tab
  3. B. Peng, S. Li, J. Zhu, L. Deng, and Y. Gao, ''A compact wideband dual- polarized slot antenna with five resonances,'' IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 2366-2369, 2017. open in new tab
  4. D. Xie and L. Zhu, ''Effective approach to reduce variation of quasi-E- plane beamwidth of EH1-mode microstrip leaky-wave antennas,'' IEEE Antennas Wireless Propag. Lett., vol. 17, no. 9, pp. 1732-1735, Sep. 2018. open in new tab
  5. J.-L. Liu, T. Su, and Z.-X. Liu, ''High-gain grating antenna with surface wave launcher array,'' IEEE Antennas Wireless Propag. Lett., vol. 17, no. 4, pp. 706-709, Apr. 2018. open in new tab
  6. S. Lei, Y. Yang, H. Hu, Z. Zhao, B. Chen, and X. Qiu, ''Power gain opti- mization method for wide-beam array antenna via convex optimization,'' IEEE Trans. Antennas Propag., vol. 67, no. 3, pp. 1620-1629, Mar. 2019. open in new tab
  7. A. A. Deshmukh, P. Verma, and S. Pawar, ''Variations of P-shape microstrip antennas for multi-band dual polarised response,'' IET Microw., Antennas Propag., vol. 13, no. 3, pp. 398-405, Feb. 2019. open in new tab
  8. Y. Xu, J. Wang, L. Ge, X. Wang, and W. Wu, ''Design of a notched-band Vivaldi antenna with high selectivity,'' IEEE Antennas Wireless Propag. Lett., vol. 17, no. 1, pp. 62-65, Jan. 2018. open in new tab
  9. S. Kim and S. Nam, ''A compact and wideband linear array antenna with low mutual coupling,'' IEEE Trans. Antennas Propag., vol. 67, no. 8, pp. 5695-5699, Aug. 2019. open in new tab
  10. W. Li, Y. Wang, B. You, Z. Shi, and Q. H. Liu, ''Compact ring slot antenna with harmonic suppression,'' IEEE Antennas Wireless Propag. Lett., vol. 17, no. 12, pp. 2459-2463, Dec. 2018. open in new tab
  11. A. M. Alzahed, S. M. Mikki, and Y. M. M. Antar, ''Nonlinear mutual cou- pling compensation operator design using a novel electromagnetic machine learning paradigm,'' IEEE Antennas Wireless Propag. Lett. , vol. 18, no. 5, pp. 861-865, May 2019. open in new tab
  12. L. Liu, S. W. Cheung, and T. I. Yuk, ''Compact MIMO antenna for portable UWB applications with band-notched characteristic,'' IEEE Trans. Anten- nas Propag., vol. 63, no. 5, pp. 1917-1924, May 2015. open in new tab
  13. U. Ullah and S. Koziel, ''A geometrically simple compact wideband circu- larly polarized antenna,'' IEEE Antennas Wireless Propag. Lett. , vol. 18, no. 6, pp. 1179-1183, Jun. 2019. open in new tab
  14. J. Nocedal and S. Wright, Numerical Optimization, 2nd ed. New York, NY, USA: Springer, 2006. open in new tab
  15. D. Guirguis and M. F. Aly, ''A derivative-free level-set method for topology optimization,'' Finite Elements Anal. Des., vol. 120, pp. 41-56, Nov. 2016. open in new tab
  16. E. N. Tziris, P. I. Lazaridis, Z. D. Zaharis, J. P. Cosmas, K. K. Mistry, and I. A. Glover, ''Optimized planar elliptical dipole antenna for UWB EMC applications,'' IEEE Trans. Electromagn. Compat., vol. 61, no. 4, pp. 1377-1384, Aug. 2019. open in new tab
  17. A. Lalbakhsh, M. U. Afzal, and K. P. Esselle, ''Multiobjective particle swarm optimization to design a time-delay equalizer metasurface for an electromagnetic band-gap resonator antenna,'' IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 912-915, 2017. open in new tab
  18. S. K. Goudos, K. Siakavara, T. Samaras, E. E. Vafiadis, and J. N. Sahalos, ''Self-adaptive differential evolution applied to real-valued antenna and microwave design problems,'' IEEE Trans. Antennas Propag., vol. 59, no. 4, pp. 1286-1298, Apr. 2011. open in new tab
  19. R.-Q. Wang and Y.-C. Jiao, ''Synthesis of wideband rotationally symmetric sparse circular arrays with multiple constraints,'' IEEE Antennas Wireless Propag. Lett., vol. 18, no. 5, pp. 821-825, May 2019. open in new tab
  20. J. Zhang, C. Zhang, F. Feng, W. Zhang, J. Ma, and Q.-J. Zhang, ''Polyno- mial chaos-based approach to yield-driven EM optimization,'' IEEE Trans. Microw. Theory Techn., vol. 66, no. 7, pp. 3186-3199, Jul. 2018. open in new tab
  21. A. Kouassi, N. Nguyen-Trong, T. Kaufmann, S. Lallechere, P. Bonnet, and C. Fumeaux, ''Reliability-aware optimization of a wideband antenna,'' IEEE Trans. Antennas Propag., vol. 64, no. 2, pp. 450-460, Feb. 2016. open in new tab
  22. J. Wang, X.-S. Yang, and B.-Z. Wang, ''Efficient gradient-based optimisa- tion of pixel antenna with large-scale connections,'' IET Microw., Antennas Propag., vol. 12, no. 3, pp. 385-389, Feb. 2018. open in new tab
  23. E. Hassan, D. Noreland, R. Augustine, E. Wadbro, and M. Berggren, ''Topology optimization of planar antennas for wideband near-field cou- pling,'' IEEE Trans. Antennas Propag., vol. 63, no. 9, pp. 4208-4213, Sep. 2015. open in new tab
  24. CST Microwave Studio, CST AG, Darmstadt, Germany, 2018. open in new tab
  25. S. Koziel and S. Ogurtsov, Antenna Design by Simulation-Driven Opti- mization. Surrogate-Based Approach. New York, NY, USA: Springer, 2014. open in new tab
  26. S. Koziel and A. Bekasiewicz, Multi-Objective Design of Antennas Using Surrogate Models. Cleveland, OH, USA: World, 2016. open in new tab
  27. J. Gong, F. Gillon, J. T. Canh, and Y. Xu, ''Proposal of a kriging output space mapping technique for electromagnetic design optimization,'' IEEE Trans. Magn., vol. 53, no. 6, pp. 1-4, Jun. 2017. open in new tab
  28. J. P. Jacobs, ''Characterisation by Gaussian processes of finite substrate size effects on gain patterns of microstrip antennas,'' IET Microw., Anten- nas Propag., vol. 10, no. 11, pp. 1189-1195, Aug. 2016. open in new tab
  29. J. Xu, M. Li, and R. Chen, ''Space mapping optimisation of 2D array elements arrangement to reduce the radar cross-scattering,'' IET Microw., Antennas Propag., vol. 11, no. 11, pp. 1578-1582, 2017. open in new tab
  30. S. Koziel and L. Leifsson, Simulation-Driven Design by Knowledge-Based Response Correction Techniques. New York, NY, USA: Springer, 2016. open in new tab
  31. S. Koziel and S. D. Unnsteinsson, ''Expedited design closure of antennas by means of trust-region-based adaptive response scaling,'' IEEE Antennas Wireless Propag. Lett., vol. 17, no. 6, pp. 1099-1103, Jun. 2018. open in new tab
  32. S. Koziel, ''Fast simulation-driven antenna design using response-feature surrogates,'' Int. J. RF Microw. Comput.-Aided Eng., vol. 25, no. 5, pp. 394-402, Jun. 2015. open in new tab
  33. M. Diez, S. Volpi, A. Serani, F. Stern, and E. F. Campana, ''Simulation- based design optimization by sequential multi-criterion adaptive sampling and dynamic radial basis functions,'' in Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineer- ing and Sciences (Computational Methods in Applied Sciences), vol. 48, E. Minisci, M. Vasile, J. Periaux, N. Gauger, K. Giannakoglou, and D. Quagliarella, Eds. Cham, Switzerland: Springer, 2019. open in new tab
  34. S. Koziel and A. Bekasiewicz, ''Reliable low-cost surrogate modeling and design optimisation of antennas using implicit space mapping with substrate segmentation,'' IET Microw., Antennas Propag., vol. 11, no. 14, pp. 2066-2070, Nov. 2017. open in new tab
  35. S. Koziel and A. Pietrenko-Dabrowska, ''Reduced-cost electromagnetic- driven optimisation of antenna structures by means of trust-region gradient-search with sparse Jacobian updates,'' IET Microw., Antennas Propag., vol. 13, no. 10, pp. 1646-1652, Aug. 2019. open in new tab
  36. S. Koziel and A. Pietrenko-Dabrowska, ''Expedited optimization of antenna input characteristics with adaptive Broyden updates,'' Eng. Com- put., to be published, doi: 10.1108/ec-01-2019-0023. open in new tab
  37. A. Pietrenko-Dabrowska and S. Koziel, ''Computationally-efficient design optimization of antennas by accelerated gradient search with sensitivity and design change monitoring,'' IET Microw., Antennas Propag., to be published, doi: 10.1049/iet-map.2019.0358. open in new tab
  38. I. T. Jolliffe, Principal Component Analysis, 2nd ed. New York, NY, USA: Springer, 2002. open in new tab
  39. C. M. Bishop, Pattern Recognition and Machine Learning. New York, NY, USA: Springer, 2006.
  40. C. G. Broyden, ''A class of methods for solving nonlinear simultaneous equations,'' Math. Comp., vol. 19, no. 92, p. 577, 1965. open in new tab
  41. M. A. Haq, S. Koziel, and Q. S. Cheng, ''EM-driven size reduction of UWB antennas with ground plane modifications,'' in Proc. Int. Appl. Comp. Electromagn. Soc. (ACES China) Symp., 2017.
  42. M. G. N. Alsath and M. Kanagasabai, ''Compact UWB monopole antenna for automotive communications,'' IEEE Trans. Antennas Propag., vol. 63, no. 9, pp. 4204-4208, Sep. 2015. open in new tab
  43. X. Qing and Z. Chen, ''Compact coplanar waveguide-fed ultra-wideband monopole-like slot antenna,'' IET Microw. Antennas Propag., vol. 3, no. 5, pp. 889-898, 2009. open in new tab
Verified by:
Gdańsk University of Technology

seen 32 times

Recommended for you

Meta Tags