Failure Monitoring and Condition Assessment of Steel-Concrete Adhesive Connection Using Ultrasonic Waves - Publication - Bridge of Knowledge

Search

Failure Monitoring and Condition Assessment of Steel-Concrete Adhesive Connection Using Ultrasonic Waves

Abstract

Adhesive bonding is increasingly being incorporated into civil engineering applications. Recently, the use of structural adhesives in steel-concrete composite systems is of particular interest. The aim of the study is an experimental investigation of the damage assessment of the connection between steel and concrete during mechanical degradation. Nine specimens consisted of a concrete cube and two adhesively bonded steel plates were examined. The inspection was based on the ultrasound monitoring during push-out tests. Ultrasonic waves were excited and registered by means of piezoelectric transducers every two seconds until the specimen failure. To determine the slip between the steel and concrete a photogrammetric method was applied. The procedure of damage evaluation is based on the monitoring of the changes in the amplitude and phase shift of signals measured during subsequent phases of degradation. To quantify discrepancies between the reference signal and other registered signals, the Sprague and Gears metric was applied. The results showed the possibilities and limitations of the proposed approach in diagnostics of adhesive connections between steel and concrete depending on the failure modes.

Citations

  • 1 9

    CrossRef

  • 0

    Web of Science

  • 1 9

    Scopus

Cite as

Full text

download paper
downloaded 27 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Applied Sciences-Basel no. 8, edition 3, pages 1 - 13,
ISSN: 2076-3417
Language:
English
Publication year:
2018
Bibliographic description:
Rucka M.: Failure Monitoring and Condition Assessment of Steel-Concrete Adhesive Connection Using Ultrasonic Waves// Applied Sciences-Basel. -Vol. 8, iss. 3 (2018), s.1-13
DOI:
Digital Object Identifier (open in new tab) 10.3390/app8030320
Bibliography: test
  1. Adams, R.D.; Wake, W.C. Structural Adhesive Joints in Engineering; Elsevier Applied Science Publishers: Amsterdam, The Netherlands, 1986; ISBN 978-94-010-8977-7. open in new tab
  2. Kumar, P.; Patnaik, A.; Chaudhary, S. A review on application of structural adhesives in concrete and steel-concrete composite and factors influencing the performance of composite connections. Int. J. Adhes. Adhes. 2017, 77, 1-14. [CrossRef] open in new tab
  3. Giurgiutiu, V.; Lyons, J.; Petrou, M.; Laub, D.; Whitley, S. Fracture mechanics testing of the bond between composite overlays and a concrete substrate. J. Adhes. Sci. Technol. 2001, 15, 1351-1371. [CrossRef] open in new tab
  4. Ali, M.S.M.; Oehlers, D.J.; Bradford, M.A. Debonding of steel plates adhesively bonded to the compression faces of RC beams. Constr. Build. Mater. 2005, 19, 413-422.
  5. Verbruggen, S.; De Sutter, S.; Iliopoulos, S.; Aggelis, D.G.; Tysmans, T. Experimental Structural Analysis of Hybrid Composite-Concrete Beams by Digital Image Correlation (DIC) and Acoustic Emission (AE). open in new tab
  6. J. Nondestruct. Eval. 2016, 35, 1-10. [CrossRef] open in new tab
  7. Marcon, M.; Vorel, J.; Ninčević, K.; Wan-Wendner, R. Modeling adhesive anchors in a discrete element framework. Materials 2017, 10, 917. [CrossRef] [PubMed] open in new tab
  8. Bouazaoui, L.; Perrenot, G.; Delmas, Y.; Li, A. Experimental study of bonded steel concrete composite structures. J. Constr. Steel Res. 2007, 63, 1268-1278. [CrossRef] open in new tab
  9. Bouazaoui, L.; Jurkiewiez, B.; Delmas, Y.; Li, A. Static behaviour of a full-scale steel-concrete beam with epoxy-bonding connection. Eng. Struct. 2008, 30, 1981-1990. [CrossRef] open in new tab
  10. Jurkiewiez, B.; Meaud, C.; Michel, L. Non linear behaviour of steel-concrete epoxy bonded composite beams. J. Constr. Steel Res. 2011, 67, 389-397. [CrossRef] open in new tab
  11. Van Gemert, D. Force transfer in epoxy bonded steel/concrete joints. Int. J. Adhes. Adhes. 1980, 1, 67-72. [CrossRef] open in new tab
  12. Barnes, R.A.; Mays, G.C. The transfer of stress through a steel to concrete adhesive bond. Int. J. Adhes. Adhes. 2001, 21, 495-502. [CrossRef] open in new tab
  13. Nehdi, M.; El Damatty, A.; Rahimi, R. Investigation on lap-joint behaviour of GFRP plates bonded to silica fume and rice husk ash concrete. Int. J. Adhes. Adhes. 2003, 23, 323-333. [CrossRef] open in new tab
  14. Si Larbi, A.; Ferrier, E.; Jurkiewiez, B.; Hamelin, P. Static behaviour of steel concrete beam connected by bonding. Eng. Struct. 2007, 29, 1034-1042. [CrossRef] open in new tab
  15. Berthet, J.F.; Yurtdas, I.; Delmas, Y.; Li, A. Evaluation of the adhesion resistance between steel and concrete by push out test. Int. J. Adhes. Adhes. 2011, 31, 75-83. [CrossRef] open in new tab
  16. Helincks, P.; De Corte, W.; Klusák, J.; Boel, V.; De Schutter, G. Experimental Investigation of the Influence of the Bond Conditions on the Shear Bond Strength between Steel and Self-Compacting Concrete Using Push-Out Tests. Key Eng. Mater. 2012, 525-526, 205-208. [CrossRef] open in new tab
  17. Meaud, C.; Jurkiewiez, B.; Ferrier, E. Steel-concrete bonding connection: An experimental study and non-linear finite element analysis. Int. J. Adhes. Adhes. 2014, 54, 131-142. [CrossRef] open in new tab
  18. Zhan, Y.; Ma, Z.J.; Asce, F.; Zhao, R.; Li, G.; Xiang, T. Interface Behavior between Steel and Concrete Connected by Bonding. J. Bridge Eng. 2016, 21, 04016026. [CrossRef] open in new tab
  19. Amerini, F.; Barbieri, E.; Meo, M.; Polimeno, U. Detecting loosening/tightening of clamped structures using nonlinear vibration. Smart Mater. Struct. 2010, 19, 85013. [CrossRef] open in new tab
  20. Wang, T.; Song, G.; Wang, Z.; Li, Y. Proof-of-concept study of monitoring bolt connection status using a piezoelectric based active sensing method. Smart Mater. Struct. 2013, 22, 87001. [CrossRef] open in new tab
  21. Kędra, R.; Rucka, M. Damage detection in a bolted lap joint using guided waves. Procedia Eng. 2017, 199, 2114-2119. [CrossRef] open in new tab
  22. Rokhlin, S.I. Lamb wave interaction with lap-shear adhesive joints: Theory and experiment. J. Acoust. Soc. Am. 1991, 89, 2758-2765. [CrossRef] open in new tab
  23. Di Scalea, F.L.; Bonomo, M.; Tuzzeo, D. Ultrasonic guided wave inspection of bonded lap joints: Noncontact method and photoelastic visualization. Res. Nondestruct. Eval. 2001, 13, 153-171. [CrossRef] open in new tab
  24. Yonathan Sunarsa, T.; Aryan, P.; Jeon, I.; Park, B.; Liu, P.; Sohn, H. A Reference-Free and Non-Contact Method for Detecting and Imaging Damage in Adhesive-Bonded Structures Using Air-Coupled Ultrasonic Transducers. Materials 2017, 10, 1402. [CrossRef] [PubMed] open in new tab
  25. Czarnecki, L.; Garbacz, A.; Krystosiak, M. On the ultrasonic assessment of adhesion between polymer coating and concrete substrate. Cem. Concr. Compos. 2006, 28, 360-369. [CrossRef] open in new tab
  26. Garbacz, A. Application of stress based NDT methods for concrete repair bond quality control. Bull. Pol. Acad. Sci. Tech. Sci. 2015, 63, 77-85. [CrossRef] open in new tab
  27. Garbacz, A.; Piotrowski, T.; Courard, L.; Kwaśniewski, L. On the evaluation of interface quality in concrete repair system by means of impact-echo signal analysis. Constr. Build. Mater. 2017, 134, 311-323. [CrossRef] open in new tab
  28. Antonaci, P.; Bruno, C.L.E.; Gliozzi, A.S.; Scalerandi, M. Monitoring evolution of compressive damage in concrete with linear and nonlinear ultrasonic methods. Cem. Concr. Res. 2010, 40, 1106-1113. [CrossRef] open in new tab
  29. Rucka, M.; Wilde, K. Experimental study on ultrasonic monitoring of splitting failure in reinforced concrete. J. Nondestruct. Eval. 2013, 32, 372-383. [CrossRef] open in new tab
  30. Moradi-Marani, F.; Rivard, P.; Lamarche, C.P.; Kodjo, S.A. Evaluating the damage in reinforced concrete slabs under bending test with the energy of ultrasonic waves. Constr. Build. Mater. 2014, 73, 663-673. [CrossRef] open in new tab
  31. Rucka, M.; Wilde, K. Ultrasound monitoring for evaluation of damage in reinforced concrete. Bull. Pol. Acad. Sci. Tech. Sci. 2015, 63, 65-75. [CrossRef] open in new tab
  32. Shui, G.; Wang, Y.; Huang, P.; Qu, J. Nonlinear ultrasonic evaluation of the fatigue damage of adhesive joints. NDT E Int. 2015, 70, 9-15. [CrossRef] open in new tab
  33. Zima, B.; Rucka, M. Guided wave propagation for assessment of adhesive bonding between steel and concrete. Procedia Eng. 2017, 199, 2300-2305. [CrossRef] open in new tab
  34. Song, H.; Popovics, J.S. Characterization of steel-concrete interface bonding conditions using attenuation characteristics of guided waves. Cem. Concr. Compos. 2017, 83, 111-124. [CrossRef] open in new tab
  35. Rucka, M.; Wilde, K. Crack identification using wavelets on experimental static deflection profiles. Eng. Struct. 2006, 28, 279-288. [CrossRef] open in new tab
  36. Sprague, M.A.; Geers, T.L. A spectral-element method for modelling cavitation in transient fluid-structure interaction. Int. J. Numer. Methods Eng. 2004, 60, 2467-2499. [CrossRef] open in new tab
  37. Schwer, L.E. Validation metrics for response histories: Perspectives and case studies. Eng. Comput. 2007, 23, 295-309. [CrossRef] open in new tab
  38. Sarin, H.; Kokkolaras, M.; Hulbert, G.; Papalambros, P.; Barbat, S.; Yang, R.-J. Comparing Time Histories for Validation of Simulation Models: Error Measures and Metrics. J. Dyn. Syst. Meas. Control 2010, 132, 61401. [CrossRef] open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 127 times

Recommended for you

Meta Tags