Abstract
The performance of electrode-supported solid oxide cells (SOCs) is limited adversely by gas diffusion impedance in thick and porous support. This work focuses on the improvement of gas transport properties of commercial Ni-YSZ anode-supported SOFC by femtosecond laser-based micromachining where micro-holes of identical depth but different hole separations pitches with minimal heated affected zones were imposed. The polarization resistance calculations and DRT analysis revealed that the presence of the micro-holes improves fuel transport in the anode active zone of commercial SOFC. The presence of the micro-holes resulted in up to 20.8 % and up to 17.2 % reduction in polarization resistance for dry H2 and wet H2 gas-fueled SOFC samples, respectively. Moreover, the decrease in intensity of peaks responsible for fuel diffusion with increasing micro-holed density was observed. Therefore, dense and sparse cells exhibited a performance augmentation of 25 % and 11 % in dry H2 and enhancement of 16 % and 15.6 % in wet H2, respectively. Fs-laser ablation appeared as a unique capability for the post-processing of SOFC elements via imposing different gas channel geometries.
Citations
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Authors (7)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
JOURNAL OF POWER SOURCES
no. 616,
ISSN: 0378-7753 - Language:
- English
- Publication year:
- 2024
- Bibliographic description:
- Baba M. A., Lemieszek B., Sriubas M., Abakevičiene B., Tamulevičius S., Molin S., Tamulevičius T.: Femtosecond laser ablated trench array for improving performance of commercial solid oxide cell// JOURNAL OF POWER SOURCES -Vol. 616, (2024), s.235128-
- DOI:
- Digital Object Identifier (open in new tab) 10.1016/j.jpowsour.2024.235128
- Sources of funding:
- Verified by:
- Gdańsk University of Technology
seen 43 times
Recommended for you
Developing high-performance oxygen electrodes for intermediate solid oxide cells (SOC) prepared by Ce0.8Gd0.2O2−δ backbone infiltration
- Ö. F. Aksoy,
- B. Lemieszek,
- M. Murutoglu
- + 3 authors
LaNi1-xCoxO3-δ(x=0.4 to 0.7) cathodes for solid oxide fuel cells by infiltration
- A. Chrzan,
- S. Ovtar,
- M. Chen
Fault Diagnostics in PEMFC Stacks by Evaluation of Local Performance and Cell Impedance Analysis
- J. Mitzel,
- J. Sanchez‐Monreal,
- D. Garcia‐Sanchez
- + 8 authors