Abstract
Fluctuation-enhanced sensing (FES) is a very powerful odor and gas sensing technique and as such it can play a fundamental role in the control of environments and, therefore, in the protection of health. For this reason, we conduct a comprehensive survey on the state-of-the-art of the FES technique, highlighting potentials and limits. Particular attention is paid to the dedicated instrumentation necessary for the application of the FES technique and also in this case limits and possible future developments are highlighted. In particular, we address resolution, measurement speed, reproducibility, memory, noise, and other problems such as the influence of humidity. A number of techniques and guidelines are proposed to overcome these problems. Circuit solutions are also discussed.
Citations
-
1 2
CrossRef
-
0
Web of Science
-
1 4
Scopus
Authors (3)
Cite as
Full text
- Publication version
- Accepted or Published Version
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
Applied Sciences-Basel
no. 10,
ISSN: 2076-3417 - Language:
- English
- Publication year:
- 2020
- Bibliographic description:
- Scandurra G., Smulko J., Kish L.: Fluctuation-Enhanced Sensing (FES): A Promising Sensing Technique// Applied Sciences-Basel -Vol. 10,iss. 17 (2020), s.5818-
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/app10175818
- Verified by:
- Gdańsk University of Technology
seen 94 times
Recommended for you
Flicker Noise in Resistive Gas Sensors—Measurement Setups and Applications for Enhanced Gas Sensing
- J. Smulko,
- G. Scandurra,
- K. Drozdowska
- + 3 authors
Effects of UV light irradiation on fluctuation enhanced gas sensing by carbon nanotube networks
- K. Drozdowska,
- A. Rehman,
- A. Krajewska
- + 5 authors
UV Light-Modulated Fluctuation-Enhanced Gas Sensing by Layers of Graphene Flakes/TiO2 Nanoparticles
- J. Smulko,
- T. Chludziński,
- U. Çindemir
- + 2 authors