Abstract
Consider the Euclidean space Rn with the orthogonal action of a compact Lie group G. We prove that a locally Lipschitz G-invariant mapping f from Rn to R can be uniformly approximated by G-invariant smooth mappings g in such a way that the gradient of g is a graph approximation of Clarke’s generalized gradient of f . This result enables a proper development of equivariant gradient degree theory for a class of set-valued gradient mappings
Citations
-
1
CrossRef
-
0
Web of Science
-
2
Scopus
Authors (2)
Cite as
Full text
download paper
downloaded 111 times
- Publication version
- Accepted or Published Version
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
Mathematics
no. 8,
ISSN: 2227-7390 - Language:
- English
- Publication year:
- 2020
- Bibliographic description:
- Dzedzej Z., Gzella T.: Generalized Gradient Equivariant Multivalued Maps, Approximation and Degree// Mathematics -Vol. 8,iss. 8 (2020), s.1262-
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/math8081262
- Verified by:
- Gdańsk University of Technology
seen 197 times
Recommended for you
The Hopf type theorem for equivariant gradient local maps
- P. Bartłomiejczyk,
- P. Nowak-Przygodzki
2017
Topological degree for equivariant gradient perturbations of an unbounded self-adjoint operator in Hilbert space
- P. Bartłomiejczyk,
- B. Kamedulski,
- P. Nowak-Przygodzki
2020