Green analytical chemistry: Social dimension and teaching - Publication - Bridge of Knowledge

Search

Green analytical chemistry: Social dimension and teaching

Abstract

Green Analytical Chemistry (GAC) is the idea which every analytical chemist should be familiar of. Due to continuous improvement in the subject both from the aspects of theory and experimentation, the dynamic way analytical chemistry studies are evolving in the frame of chemistry degrees should not be surprising. Recently, many efforts have been made in order to include Green Chemistry principles to Education, also in the field of analytical chemistry, where twelve GAC principles play a main role. The understanding and awareness of these principles and other evolving related concepts requires special teaching of GAC as a part of curriculum at undergraduate and graduate levels. This article is focused on the main concepts and challenges of teaching GAC and also presents the current accomplishment in this field. In addition, teaching social responsibility in GAC is discussed. Several case studies are also presented as an example for the learners.

Citations

  • 8 5

    CrossRef

  • 0

    Web of Science

  • 7 9

    Scopus

Authors (6)

  • Photo of dr Aleksandra Kurowska-Susdorf

    Aleksandra Kurowska-Susdorf dr

    • The Naval Academy Faculty of Humanities and Social Sciences,
  • Photo of  Marcin Zwierżdżyński

    Marcin Zwierżdżyński

    • AGH University of Science and Technology
  • Photo of  Anita Bevanda

    Anita Bevanda

    • University of Mostar Department of Chemistry, Faculty of Science and Education
  • Photo of  Stanislava Talić

    Stanislava Talić

    • University of Mostar Department of Chemistry, Faculty of Science and Education
  • Photo of  Anita Ivanković

    Anita Ivanković

    • University of Mostar Faculty of Agronomy and Food Technology

Cite as

Full text

download paper
downloaded 542 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
TRAC-TRENDS IN ANALYTICAL CHEMISTRY no. 111, pages 185 - 196,
ISSN: 0165-9936
Language:
English
Publication year:
2019
Bibliographic description:
Kurowska-Susdorf A., Zwierżdżyński M., Bevanda A., Talić S., Ivanković A., Płotka-Wasylka J.: Green analytical chemistry: Social dimension and teaching// TRAC-TRENDS IN ANALYTICAL CHEMISTRY. -Vol. 111, (2019), s.185-196
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.trac.2018.10.022
Bibliography: test
  1. J. Namieśnik, Green analytical chemistry -Some remarks, J. Sep. Sci. 24 (2001) 151-153 719 open in new tab
  2. J.M. Płotka-Wasylka, A. Kurowska-Susdorf, M. Sajid, M. de la Guardia, J. Namieśnik, M. 720 open in new tab
  3. Tobiszewski, Green Chemistry in Higher Education: State of the art, challenges and future trends.
  4. ChemSusChem, 11 (2018) 2845 -2858 open in new tab
  5. M. de la Guardia, S. Garrigues, An Ethical Commitment and an Economic Opportunity, In: 723 Challenges in Green Analytical Chemistry, Eds. M. de la Guardia, S. Garrigues, Royal Society of 724 Chemistry, 2011, pp. 1-12. open in new tab
  6. M. de la Guardia, S.Armenta, Origins of Green Analytical Chemistry, In: Green Analytical 726 open in new tab
  7. Chemistry, Eds. M.de la Guardia, S. Armenta, Comprehensive Analytical Chemistry, 57 (2011) 1-23. open in new tab
  8. M. de la Guardia, J. Ruzicka, Towards environmentally conscientious analytical chemistry through 728 miniaturization, containment and reagent replacement, Analyst 120 (1995) 17N. open in new tab
  9. D. W. Green, L. L. Smith, J. S. Crain, A. S. Boparai, J. T. Kiely, J. S. Yaeger, J. B.Schilling, Waste 730 Minimization in Analytical Methods, DOE Pollution Prevention Conference XI Knoxville, Tennessee 731 May 16-18, 1995.
  10. J. Płotka-Wasylka, A new tool for the evaluation of the analytical procedure: Green Analytical 733 Procedure Index, Talanta 181, 2018, 204-209. open in new tab
  11. M. Sajid, M. K. Woźniak, J. Płotka-Wasylka, Ultrasound-assisted solvent extraction of porous 735 membrane packed solid samples: A new approach for extraction of target analytes from solid samples, 736 open in new tab
  12. Microchemical Journal 144 (2019) 117-123. open in new tab
  13. M. Sajid, M. Khaled Nazal , M. Chmiel, N. Szczepańska, J. Namieśnik, J. Płotka-Wasylka, Solid 738 phase microextraction: apparatus, sorbent materials and application, Crit. Rev. Anal. Chem. DOI: 739 10.1080/10408347.2018.1517035 (In press) 740 open in new tab
  14. F. Rezaei, Y. Yamini, M. Moradi, B. Daraei, Supramolecular solvent-based hollow fiber liquid 741 phase microextraction of benzodiazepines, Anal. Chim. Acta, 804 (2013) 135-142 open in new tab
  15. Z. Es'haghi, Z. Rezaeifar, G.H. Rounaghi, Z.A. Nezhadi, M.A. GolsefidiSynthesis and application 743 of a novel solid-phase microextraction adsorbent: hollow fiber supported carbon nanotube reinforced 744 sol-gel for determination of phenobarbital, Anal. Chim. Acta, 689 (2011) 122-128 open in new tab
  16. F. Chemat,M. Abert Vian, G. Cravotto, Green Extraction of Natural Products: Concept 746 and Principles, Int. J. Molec. Sci. 13 (2012)8615-8627. open in new tab
  17. M. de la Guardia, S. Garrigues, Education in Green Analytical Chemistry, In : Handbook of 748 Green Analytical Chemistry, John Wiley & Sons, 2012, pp. 17-30. open in new tab
  18. P. R. Todd, Corporate Social Responsibility and Global Standardization: Sustainable 750
  19. Environmental Management in the Chemical Industry, Management & Marketing, 4 (2009) 3-16. open in new tab
  20. P. Krogsgaard-Larsen, P. Thostrup, F. Besenbacher, Scientific Social Responsibility: A Call to 752 open in new tab
  21. Arms, Angewandte Chemie: International Edition, 50 (2011) 10738-10740.
  22. J. D. Bradley, Chemistry Education for Development, Chem. Educ. Int. 6 (2005) 1-6. open in new tab
  23. F. Rauch, What do regulative ideas in education for sustainable development and scientific 755 literacy as myth have in common? In: Contemporary science education I. Eilks & B. Ralle (Eds.), 756 Aachen: Shaker, 2011, pp. 35-46.
  24. M. Burmeister, F. Rauch, I. Eilks, Education for Sustainable Development (ESD) and secondary 758 chemistry education. Chem. Educ. Res. Practic. 13 (2012) 59-68. open in new tab
  25. A. Lindgreen, V. Swaen, Corporate Social Responsibility, Int. J. Manag. Rev. 12 (2010) 1-7 760 open in new tab
  26. M. Valcárcel, R. Lucena, Social responsibility in Analytical Chemistry, Trends Anal.Chem. 31 761 (2012) 1-7. open in new tab
  27. M. Hartings, D. Fahy, Communicating chemistry for public engagement, Nature Chemistry, 3 763 (2011) 474-477. open in new tab
  28. M. Valcárcel, G.D. Christian, R. Lucena, Teaching social responsibility in analytical chemistry, 765 Anal. Chem. 85 (2013) 6152-6161. open in new tab
  29. G. Centi, S. Perathoner, From Green to Sustainable Industrial Chemistry. In: Sustainable 767 open in new tab
  30. E.J. Woodhouse, S. Breyman, Green Chemistry as Social Movement? Sci. Technol. Hum.Val 30 769 (2005) 199-222. open in new tab
  31. P.T. Anastas, I.J. Levy, K.E. Parent, (Eds.). Green Chemistry Education: Changing the Course of 771 Chemistry, American Chemical Society, Washington, 2009. open in new tab
  32. I. Eilks, F. Rauch, B. Ralle, A. Hofstein, A. How to balance the chemistry curriculum between 773 science and society. In: Teaching Chemistry -A studybook, I. Eilks, A. Hofstein (Eds.), Sense, 774 open in new tab
  33. Rotterdam, 2013.
  34. J. C. Garibay, STEM students' social agency and views on working for social change: Are STEM 776 disciplines developing socially and civically responsible students? J. Res. Sci. Teach. 52, (2015) 610- 777 632. open in new tab
  35. G.A. Lasker, K.E. Mellor, M.L. Mullins, S.M. Nesmith, N.J. Simcox, Social and Environmental 779 Justice in the Chemistry Classroom. J. Chem. Educ. 9, (2017) 983-987. open in new tab
  36. S. Armenta, M. de la Guardia, Determination of mercury in milk by cold vapor atomic 781 fluorescence: a Green Analytical Chemistry laboratory experiment, J. Chem. Educ., 88 (2011) 488- 782 491. open in new tab
  37. L.F. Goes, S.H.Leal, P. Corio, C. Fernandez, Pedagogical content knowledge aspects of green 784 chemistry of organic chemistry university teachers, In: E-Book Proceedings of the ESERA 2013 785 Conference: Science Education Research for Evidence-based Teaching and Coherence in Learning, C.
  38. P. Constantinou, N. Papadouris, A. Hadjigeorgiou (Eds), European Science Education Research 787 Association, Cyprus, 2013. open in new tab
  39. M. A. Korany, H. Mahgoub, R. S. Haggag, M. A. A. Ragab, O. A. Elmallah, Green chemistry: 789 Analytical and chromatography,J. Liquid Chromatogr. Related Technol. 40 (2017) 839-852. open in new tab
  40. E. Ibáñez, A. Cifuentes, Green Extraction Techniques, Trends in Analytical Chemistry, 71, 1- 791 292, 2015. Available on: https://www.sciencedirect.com/journal/trac-trends-in-analytical- 792 chemistry/vol/71/suppl/C. Available on 31.07.2018 open in new tab
  41. M. de la Guardia, S. Garrigues, Handbook of Green Analytical Chemistry, John Wiley & Sons, 794 open in new tab
  42. Ltd, 2012. open in new tab
  43. M. de la Guardia, S. Garrigues, Challenges in Green Analytical Chemistry, RSC, 2011. 796 open in new tab
  44. M. Koel, M. Kaljurand, Green Analytical Chemistry, RSC, 2010.
  45. M. De la Guardia and S. Armenta, Green Analytical Chemistry: Theory and Practise, Elsevier, 798
  46. Amsterdam, 2011. open in new tab
  47. E. Ibáñez, A. Cifuentes, Green Extraction Techniques: Principles, Advances and Applications, 800 Trends Anal Chem. 76, 1-676, 2017. open in new tab
  48. Inamuddin and A. Mohammad, Green Chromatographic Techniques: Separation and Purification 802 of Organic and Inorganic Analytes, Springer, 2013. open in new tab
  49. F. Pena-Pereira, M. Tobiszewski, The application of green solvents in separation science, 804 open in new tab
  50. C. A. M. Afonso, J. G. Crespo, Green Separation Processes: Fundamentals and Applications, 806 open in new tab
  51. John Wiley & Son, LTD. 2006. open in new tab
  52. A. Gałuszka, Z. Migaszewski, J. Namieśnik, The 12 principles of green analytical chemistry and 808 the SIGNIFICANCE mnemonic of green analytical practices, Trends Anal. Chem. 50 (2013) 78-84. open in new tab
  53. M. Tobiszewski, Metrics for green analytical chemistry, Anal Methods, 8 (2016) 2993-2999. open in new tab
  54. D. J. C. Constable, A. D. Curzons and V. L. Cunningham, Metrics to 'green' chemistry-which 811 are the best? Green Chem., 2002, 4, 521-527. open in new tab
  55. T. V. T. Phan, C. Gallardo and J. Mane, GREEN MOTION: a new and easy to use green 813 chemistry metric from laboratories to industry, Green Chem., 2015, 17, 2846-2852. open in new tab
  56. D. Cespi, E. S. Beach, T. E. Swarr, F. Passarini, I. Vassura, P. J. Dunn and P. T. Anastas, Life 815 cycle inventory improvement in the pharmaceutical sector: assessment of the sustainability combining 816 PMI and LCA tools, Green Chem., 2015, 17, 3390-3400. open in new tab
  57. D. Raynie and J. Driver, Green Assessment of Chemical Methods, In: 13th Annual Green 818 Chemistry and Engineering Conference, Maryland, 2009.
  58. A. Gałuszka, P. Konieczka, Z. M. Migaszewski, J. Namieśnik, Analytical Eco-Scale for 824 assessing the greenness of analytical procedures, Trends Anal. Chem. 37 (2012) 61-72. open in new tab
  59. M. de la Guardia, An Integrated Approach of Analytical Chemistry J. Braz. Chem. Soc. 10 (1999) 826 429-437.
  60. S. Garrigues, S. Armenta, M. de la Guardia, Green strategies for decontamination of analytical 828 wastes, Trend. Anal. Chem. 29 (2010) 592-601. open in new tab
  61. S. Kradtap Hartwell, Exploring the potential for using inexpensive natural reagents extracted 830 from plants to teach chemical analysis, Chem. Educ. Res. Pract. 13 (2012) 135-146.
  62. L. H. Keith, L.U. Gron, J.L. Young, Green Analytical Methodologies, Chem. Rev. (107) 2007 832 2695-2708 open in new tab
  63. J. Andraos, A. P. Dicks, Green chemistry teaching in higher education: a review of effective 834 practices, Chem. Educ. Res. Pract. 13 (2012) 69-79. open in new tab
  64. S. Dutta, A. K. Das. Green Analytical Laboratory Experiments, in: M. de la Guardia, S. Garrigues 836 (Eds), Handbook of green analytical chemistry, John Wiley & Sons, Ltd., 2012, pp 31-54. open in new tab
  65. L.U.Gron, Green Analytical Chemistry: Application and Education, in: P. T . Anastas, I. J. Levy, K. open in new tab
  66. E.Parent (Eds), Green Chemistry Education, ACS Symposium Series, American Chemical Society, 839 open in new tab
  67. Washington, DC, 2009, pp. 103-116.
  68. L. U. Gron, S. B. Bradley, J. R. McKenzie, S. E. Shinn, M. Warfield Teague, How To Recognize 841 Success and Failure: Practical Assessment of an Evolving, First-Semester Laboratory Program Using 842 Simple, Outcome-Based Tools. J. Chem. Educ. 90 (2013) 694-699. open in new tab
  69. F. Pena-Pereira, M. Costas, C. Bendicho, I. Lavilla A Solvent Microextraction Approach for 844 Environmental Analysis: Colorimetric Assay for Phosphorus Determination in Natural Waters, J 845 Chem Educ. (91) 2014 586−589. open in new tab
  70. H. L. Buckley, A. R. Beck, M. J. Mulvihill, M. C. Douskey, Fitting It All, In: Adapting a Green 847 open in new tab
  71. Chemistry Extraction Experiment for Inclusion in an Undergraduate Analytical Laboratory, J. Chem. 848 open in new tab
  72. Educ. 90 (2013) 771-774. open in new tab
  73. D. L. Giokas, E. K. Paleologos, M I. Karayannis, Micelle-Mediated Extraction of Heavy Metals 850 from Environmental Samples, An Environmental Green Chemistry Laboratory Experiment, J. Chem. 851 Educ. 80 (2003) 61-64. open in new tab
  74. S. C. Purcell, P. Pande, Y. Lin, E. J. Rivera, L. Paw U, L. M. Smallwood, G. A. Kerstiens, L. B. 853 open in new tab
  75. Armstrong, M. T. Robak, A. M. Baranger, M. C. Douskey, Extraction and Antibacterial Properties of 854 Thyme Leaf Extracts: Authentic Practice of Green Chemistry, J. Chem. Educ. 93 (2016) 1422-1427.
  76. F. Chemat, S. Perino-Issartier, E. Petitcolas, X. Fernandez, "In situ" extraction of essential oils by 856 use of Dean-Stark glassware and a Vigreux column inside a microwave oven: a procedure for teaching 857 green analytical chemistry. Anal. Bioanal. Chem. 404 (2012) 679-682. open in new tab
  77. J. E. Owens, L. B. Zimmerman, M. A. Gardner, L. E. Lowe, Analysis of Whiskey by Dispersive 859 open in new tab
  78. Liquid−Liquid Microextraction Coupled with Gas Chromatography/Mass Spectrometry: An Upper 860 Division Analytical Chemistry Experiment Guided by Green Chemistry. J. Chem. Educ. 93 (2016) 861 186-192.
  79. Y. He, L. Tang, X. Wu, X. Hou, Y. Lee, Spectroscopy: The Best Way Toward Green Analytical 863 Chemistry, Appl. Spectrosc. Rev. (42) 2007 119-138. open in new tab
  80. S. Armenta, M. de la Guardia, Green Spectroscopy: A Scientometric Picture, Spectrosc. Lett. (42) 865 2009 277-283. open in new tab
  81. J. Wang, Real-Time Electrochemical Monitoring: Toward Green Analytical Chemistry Acc. open in new tab
  82. Chem. Res. 35 (2002) 811-816. open in new tab
  83. M. K. Abd El-Rahman, H. E. Zaazaa, N. Badr ElDin, A. A. Moustafa, Just-Dip-It (Potentiometric 869 Ion-Selective Electrode): An Innovative Way of Greening Analytical Chemistry ACS Sustainable 870 Chem. Eng. 4 (2016) 3122−3132. open in new tab
  84. E.J. Olson, P. Bühlmann, Minimizing Hazardous Waste in the Undergraduate Analytical 872 Laboratory: A Microcell for Electrochemistry, J. Chem. Educ. 87 (2016) 1260-1261. open in new tab
  85. O. Amor-Gutiérrez, E. C. Rama, M. T. Fernández-Abedul, A. Costa-García, Bioelectroanalysis in 874 a Drop: Construction of a Glucose Biosensor, J. Chem. Educ. 94 (2017) 806−812. open in new tab
  86. A. Alberich, N. Serrano, J. M. Díaz-Cruz, C. Ariño, M. Esteban, Substitution of Mercury 876 Electrodes by Bismuth-Coated Screen-Printed Electrodes in the Determination of Quinine in Tonic 877 Water, J. Chem. Educ. 90 (2013) 1681-1684. open in new tab
  87. P. R. M. Correia, R. C. Siloto, A. Cavicchioli, P. V. Oliveira, F. R. P. Rocha, Green Analytical 879 Chemistry in Undergraduate Laboratories: Flow-Injection Determination of Creatinine in Urine with 880 Photochemical Treatment of Waste, Chem. Educator, 9 (2004) 242-246.
  88. A. Martinović Bevanda, S. Talić, A. Ivankovic, Green Analytical Chemistry in Teaching 882 Laboratory: Spectrophotometric Determination of Fe Ions with Using Green Tea to Demonstrate the 883 Principles of Sequential Injection Analysis. Austin J. Anal. Pharm. Chem. 2 (2015) 1043-1047 open in new tab
Verified by:
Gdańsk University of Technology

seen 209 times

Recommended for you

Meta Tags