Heat transfer and pressure drop characteristics of the silicone-based plate heat exchanger - Publication - Bridge of Knowledge

Search

Heat transfer and pressure drop characteristics of the silicone-based plate heat exchanger

Abstract

The paper presents an experimental investigation of a silicone based heat exchanger, with passive heat transfer intensification by means of surface enhancement. The main objective of this paper was to experimentally investigate the performance of a heat exchanger module with the enhanced surface. Heat transfer in the test section has been examined and described with precise measurements of thermal and flow conditions. Reported tests were conducted under steady-state conditions for single-phase liquid cooling. Proposed surface modification increases heat flux by over 60%. Gathered data presented, along with analytical solutions and numerical simulation allow the rational design of heat transfer devices.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Cite as

Full text

download paper
downloaded 108 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
Published in:
Archives of Thermodynamics no. 40, pages 127 - 143,
ISSN: 1231-0956
Language:
English
Publication year:
2019
Bibliographic description:
Muszyński T., Andrzejczyk R., Wong Park I., Dorao C.: Heat transfer and pressure drop characteristics of the silicone-based plate heat exchanger// Archives of Thermodynamics. -Vol. 40., iss. 1 (2019), s.127-143
DOI:
Digital Object Identifier (open in new tab) 10.24425/ather.2019.128294
Bibliography: test
  1. Muszynski T.: Design and experimental investigations of a cylindrical microjet heat exchanger for waste heat recovery systems. Appl. Therm. Eng. 115(2017), 782-792. DOI:10.1016/j.applthermaleng.2017.01.021. open in new tab
  2. Kowalczyk C., Rolf R.M., Kowalczyk B., Badyda K.: Mathematical model of combined geat and power plant using GateCycle TM software. J. Power Technol. 95(2015), 183-191.
  3. Mikielewicz D., Jakubowska B.: Prediction of flow boiling heat transfer coeffi- cient for carbon dioxide in minichannels and conventional channels. Arch. Thermo- dyn. 37(2016), 2, 89-106. DOI:10.1515/aoter-2016-0014. open in new tab
  4. Mikielewicz D., Jakubowska B.: Calculation method for flow boiling and flow condensation of R134a and R1234yf in conventional and small diameter channels. Polish Marit. Res. 24(2017), 141-148. DOI:10.1515/pomr-2017-0032. open in new tab
  5. Cho E.S., Choi J.W., Yoon J.S., Kim M.S.: Experimental study on microchannel heat sinks considering mass flow distribution with non-uniform heat flux conditions. Int. J. Heat Mass Tran. 53(2010), 9, 2159-2168. DOI:10.1016/j.ijheatmasstransfer.2009.12.026. open in new tab
  6. Muszynski T., Mikielewicz D.: Structural optimization of microjet array cooling system. Appl. Therm. Eng. 123 (2017), 103-110. DOI:10.1016/j.applthermaleng.2017.05.082. open in new tab
  7. Muszynski T., Andrzejczyk R.: Heat transfer characteristics of hybrid mi- crojet -microchannel cooling module. Appl. Therm. Eng. 93(2016), 1360-1366. DOI:10.1016/j.applthermaleng.2015.08.085. open in new tab
  8. Muszynski T., Mikielewicz D.: Comparison of heat transfer characteristics in surface cooling with boiling microjets of water, ethanol and HFE7100. Appl. Therm. Eng. 93(2016), 1403-1409. DOI:10.1016/j.applthermaleng.2015.08.107. open in new tab
  9. Muszynski T., Andrzejczyk R., Dorao C.A.: Detailed experimental investi- gations on frictional pressure drop of R134a during flow boiling in 5 mm diame- ter channel: The influence of acceleration pressure drop component. Int. J. Refrig. 82(2017). DOI:10.1016/j.ijrefrig.2017.05.029. open in new tab
  10. Muszynski T., Andrzejczyk R., Dorao C.A.: Investigations on mixture prepa- ration for two phase adiabatic pressure drop of R134a flowing in 5 mm diameter channel. Arch. Thermodyn. 38(2017), 3, 101-118. DOI:10.1515/aoter-2017-0018. open in new tab
  11. Motyliński K., Kupecki J.: Modeling the dynamic operation of a small fin plate heat exchanger-parametric analysis. Arch. Thermodyn. 36(2015), 3, 85-103. DOI:10.1515/aoter-2015-0023. open in new tab
  12. Taler D., Ocłoń P.: Thermal contact resistance in plate fin-and-tube heat ex- changers, determined by experimental data and CFD simulations. Int. J. Therm. Sci. 84(2014), 309-322. DOI:10.1016/j.ijthermalsci.2014.06.001. open in new tab
  13. Zhu Y., Hu Z., Zhou Y., Jiang L., Yu L.: Discussion of the internal heat ex- changer's effect on the organic rankine cycle. Appl. Therm. Eng. 75(2015), 334-343. DOI:10.1016/j.applthermaleng.2014.10.037. open in new tab
  14. Wang Q., Zeng M., Ma T., Du X., Yang J.: Recent development and appli- cation of several high-efficiency surface heat exchangers for energy conversion and utilization. Appl. Energy. 135(2014), 748-777. open in new tab
  15. Bustamante J.G., Rattner A.S., Garimella S.: Achieving near-water-cooled power plant performance with air-cooled condensers. Appl. Therm. Eng. 105(2016), 362-371. DOI:10.1016/j.applthermaleng.2015.05.065. open in new tab
  16. Kupecki J., Badyda K.: Mathematical model of a plate fin heat exchanger oper- ating under solid oxide fuel cell working conditions. Arch. Thermodyn. 34(2013), 4, 3-21. DOI:10.2478/aoter-2013-0026. open in new tab
  17. Muszynski T., Andrzejczyk R.: Applicability of arrays of microjet heat transfer correlations to design compact heat exchangers. Appl. Therm. Eng. 100(2016), 105- 113. DOI:10.1016/j.applthermaleng.2016.01.120 open in new tab
  18. Fratczak M., Nowak P., Czeczot J., Metzger M.: Simplified dynamical input- output modeling of plate heat exchangers -case study. Appl. Therm. Eng. 98(2016), 880-893. DOI:10.1016/j.applthermaleng.2016.01.004. open in new tab
  19. Trojanowski R., Butcher T., Worek M., Wei G.: Polymer heat exchanger design for condensing boiler applications. Appl. Therm. Eng. 103(2016), 150-158. DOI:10.1016/j.applthermaleng.2016.03.004. open in new tab
  20. Muszynski T., Koziel S.M.: Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator. Arch. Thermodyn. 37(2016), 3, 45-62. DOI:10.1515/aoter-2016-0019. open in new tab
  21. Andrzejczyk R., Muszynski T.: Performance analyses of helical coil heat ex- changers. The effect of external coil surface modification on heat exchanger effec- tiveness. Arch. Thermodyn. 37(2016) 4, 137-159. DOI:10.1515/aoter-2016-0032. open in new tab
  22. National Instruments Coorporation LabVIEW User Manual. Ni.com (2013). open in new tab
  23. Taylor B.N., Kuyatt C.E.: Guidelines for evaluating and expressing the uncertainty of NIST measurement results. NIST Tech. Note. 1297(1994), 20. DOI:10.6028/NIST.TN.1900. open in new tab
  24. Jansen H., de Boer M., Legtenberg R., Elwenspoek M.: The black silicon method: a universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control. J. Micromech. Microeng. 5(1995), 5, 115. DOI:10.1088/0960-1317/5/2/015. open in new tab
  25. Park I.W., Fernandino M., Dorao C.A.: Wetting state transitions over hierarchical conical microstructures. Adv. Mater. Interfaces. 5(2018) 1701039. DOI:10.1002/admi.201701039. open in new tab
Verified by:
Gdańsk University of Technology

seen 159 times

Recommended for you

Meta Tags