Abstract
We consider a conservative second order Hamiltonian system \ddot{q}+ ∇V(q)=0 in R3 with a potential V having a global maximum at the origin and a line l ∩ {0} = ∅ as a set of singular points. Under a certain compactness condition on V at infinity and a strong force condition at singular points we study, by the use of variational methods and geometrical arguments, the existence of homoclinic solutions of the system.
Citations
-
2
CrossRef
-
0
Web of Science
-
5
Scopus
Authors (2)
Cite as
Full text
download paper
downloaded 28 times
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.2478/s11533-012-0096-5
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuł w czasopiśmie wyróżnionym w JCR
- Published in:
-
Central European Journal of Mathematics
no. 10,
edition 6,
pages 1920 - 1927,
ISSN: 1895-1074 - Language:
- English
- Publication year:
- 2012
- Bibliographic description:
- Janczewska J., Maksymiuk J.: Homoclinic orbits for a class of singular second order Hamiltonian systems in ℝ3// Central European Journal of Mathematics. -Vol. 10, iss. 6 (2012), s.1920-1927
- DOI:
- Digital Object Identifier (open in new tab) 10.2478/s11533-012-0096-5
- Verified by:
- Gdańsk University of Technology
seen 157 times
Recommended for you
Homoclinics for singular strong force Lagrangian systems in R^N
- M. Izydorek,
- J. Janczewska,
- N. Waterstraat
2021