How thermal stability of ionic liquids leads to more efficient TiO2-based nanophotocatalysts: Theoretical and experimental studies - Publication - Bridge of Knowledge

Search

How thermal stability of ionic liquids leads to more efficient TiO2-based nanophotocatalysts: Theoretical and experimental studies

Abstract

Ionic liquids (ILs) containing distinct nitrogen-bearing organic cations (pyridinium, pyrrolidinium, imidazolium, ammonium, morpholinium) were first used for the preparation of 23 IL-TiO2 types of composites by ionic liquid assisted solvothermal synthesis. These 23 optimal ILs structures (i.e. compounds exhibiting an optimal combination of specific properties, functionality, and safety) for synthesis and experimental validation were selected by computational high-throughput screening from a combinatorically created library containing 836 ILs theoretically designed and characterized candidates. Then, selected IL-TiO2 structures with potential photocatalytic activity were synthesized with the use of solvothermal reaction. Then, the decomposition level, the role of the individual IL cation structure on the morphology, thermal stability, surface and photocatalytic properties of the IL-TiO2 microparticles were determined experimentally. The chemoinformatic analysis of the relationship between the structure of the ionic liquid, its thermal stability under the conditions of synthesis and photocatalytic activity was applied for the first time. The results presented here are the first step in the development of methodology (combined experimental and theoretical) that may simplify the procedure of designing safer and more efficient TiO2-based photocatalyst. The developed computational methodology makes it possible to predict properties of newly synthesized IL-TiO2 materials before synthesis and identifies structural features of ILs that influence the efficiency of IL-TiO2 system. The presented approach reduces the number and cost of necessary experiments, as well as increases the success ratio of efficient TiO2-based photocatalyst design by a selection of optimal IL structures (i.e. ionic liquid characterized by a combination of most promising physicochemical features).

Citations

  • 1 0

    CrossRef

  • 0

    Web of Science

  • 1 0

    Scopus

Authors (7)

Cite as

Full text

download paper
downloaded 35 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
JOURNAL OF COLLOID AND INTERFACE SCIENCE no. 572, pages 396 - 407,
ISSN: 0021-9797
Language:
English
Publication year:
2020
Bibliographic description:
Rybińska-Fryca A., Mikoajczyk A., Łuczak J., Paszkiewicz-Gawron M., Paszkiewicz M., Zaleska-Medynska A., Puzyn T.: How thermal stability of ionic liquids leads to more efficient TiO2-based nanophotocatalysts: Theoretical and experimental studies// JOURNAL OF COLLOID AND INTERFACE SCIENCE -Vol. 572, (2020), s.396-407
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.jcis.2020.03.079
Bibliography: test
  1. A. Fujishima, N.R. Tata, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C Photochem. Rev. 1 (2000) 1-21, https://doi.org/ 10.1016/S1389-5567(00)00002-2. open in new tab
  2. B. Ohtani, Photocatalysis A to Z-What we know and what we do not know in a scientific sense, J. Photochem. Photobiol. C Photochem. Rev. 11 (2010) 157 - 178, https://doi.org/10.1016/j.jphotochemrev.2011.02.001. open in new tab
  3. K. Nakata, A. Fujishima, TiO2 photocatalysis: Design and applications, J. Photochem. Photobiol. C Photochem. Rev. 13 (2012) 169-189, https://doi.org/ 10.1016/j.jphotochemrev.2012.06.001. open in new tab
  4. M.A. Fox, M.T. Dulay, Heterogeneous photocatalysis, Chem. Rev. 93 (1993) 341-357, https://doi.org/10.1021/cr00017a016. open in new tab
  5. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials, Chem. Rev. 114 (2014) 9919-9986, https://doi.org/10.1021/cr5001892. open in new tab
  6. Q. Wang, K. Domen, Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies, Chem. Rev. 120 (2020) 919- 985, https://doi.org/10.1021/acs.chemrev.9b00201. open in new tab
  7. D. Fattakhova-Rohlfing, A. Zaleska, T. Bein, Three-dimensional titanium dioxide nanomaterials, Chem. Rev. 114 (2014) 9487-9558, https://doi.org/ 10.1021/cr500201c. open in new tab
  8. Y. Shu, X. Gong, Z. Jiang, L. Lu, X. Xu, C. Wang, H. Deng, Metal-organic frameworks for the exploit of distance between active sites in efficient photocatalysis, Angew. Chemie Int. Ed. (2020), https://doi.org/10.1002/ anie.201915537. open in new tab
  9. K. Shirai, G. Fazio, T. Sugimoto, D. Selli, L. Ferraro, K. Watanabe, M. Haruta, B. Ohtani, H. Kurata, C. Di Valentin, Y. Matsumoto, Water-assisted hole trapping at the highly curved surface of nano-TiO2 photocatalyst, J. Am. Chem. Soc. 140 (2018) 1415-1422, https://doi.org/10.1021/jacs.7b11061. open in new tab
  10. M.F. Kuehnel, C.E. Creissen, C.D. Sahm, D. Wielend, A. Schlosser, K.L. Orchard, E. Reisner, ZnSe nanorods as visible-light absorbers for photocatalytic and photoelectrochemical H2 evolution in water, Angew. Chemie Int. Ed. 58 (2019) 5059-5063, https://doi.org/10.1002/anie.201814265. open in new tab
  11. S. Banerjee, S.C. Pillai, P. Falaras, K.E. O'Shea, J.A. Byrne, D.D. Dionysiou, New insights into the mechanism of visible light photocatalysis, J. Phys. Chem. Lett. 5 (2014) 2543-2554, https://doi.org/10.1021/jz501030x. open in new tab
  12. S.G. Kumar, L.G. Devi, Review on modified TiO2 photocatalysis under UV/ visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics, J. Phys. Chem. A 115 (2011) 13211-13241, https:// doi.org/10.1021/jp204364a. open in new tab
  13. X. Yang, D. Wang, Photocatalysis: from fundamental principles to materials and applications, ACS Appl. Energy Mater. 1 (2018) 6657-6693, https://doi. org/10.1021/acsaem.8b01345. open in new tab
  14. R. Asahi, T. Morikawa, H. Irie, T. Ohwaki, Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects, Chem. Rev. 114 (2014) 9824-9852, https://doi.org/10.1021/cr5000738. open in new tab
  15. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev. 107 (2007) 2891-2959, https:// doi.org/10.1021/cr0500535. open in new tab
  16. R. Daghrir, P. Drogui, D. Robert, Modified TiO2 for environmental photocatalytic applications: a review, Ind. Eng. Chem. Res. 52 (2013) 3581-3599, https://doi.org/10.1021/ie303468t. open in new tab
  17. A. Mikolajczyk, A. Gajewicz, E. Mulkiewicz, B. Rasulev, M. Marchelek, M. Diak, S. Hirano, A. Zaleska-Medynska, T. Puzyn, Nano-QSAR modeling for ecosafe design of heterogeneous TiO2 -based nano-photocatalysts, Environ. Sci. Nano. 5 (2018) 1150-1160, https://doi.org/10.1039/C8EN00085A. open in new tab
  18. A. Mikolajczyk, A. Malankowska, G. Nowaczyk, A. Gajewicz, S. Hirano, S. Jurga, A. Zaleska -Medynska, T. Puzyn, Combined experimental and computational approach to developing efficient photocatalysts based on Au/Pd-TiO2 nanoparticles, Environ. Sci. Nano 3 (2016) 1425-1435, https://doi.org/ 10.1039/C6EN00232C. open in new tab
  19. A. Krukowska, M.J. Winiarski, J. Strychalska-Nowak, T. Klimczuk, W. Lisowski, A. Mikolajczyk, H.P. Pinto, T. Puzyn, T. Grzyb, A. Zaleska-Medynska, Rare earth ions doped K2Ta2O6 photocatalysts with enhanced UV-vis light activity, Appl. Catal. B Environ. 224 (2018) 451-468, https://doi.org/10.1016/j. apcatb.2017.10.061. open in new tab
  20. A. Cybula, J.B. Priebe, M.-M. Pohl, J.W. Sobczak, M. Schneider, A. Zielin´ skaJurek, A. Brückner, A. Zaleska, The effect of calcination temperature on structure and photocatalytic properties of Au/Pd nanoparticles supported on TiO2, Appl. Catal. B Environ. 152-153 (2014) 202-211, https://doi.org/ 10.1016/j.apcatb.2014.01.042. open in new tab
  21. J. Luczak, M. Paszkiewicz, A. Krukowska, A. Malankowska, A. ZaleskaMedynska, Ionic liquids for nano-and microstructures preparation. Part 1: Properties and multifunctional role, Adv Colloid Interface Sci. 230 (2016) 13-28, https://doi.org/10.1016/j.cis.2015.08.006. open in new tab
  22. J. Luczak, M. Paszkiewicz, A. Krukowska, A. Malankowska, A. ZaleskaMedynska, Ionic liquids for nano-and microstructures preparation. Part 2: Application in synthesis, Adv Colloid Interface Sci. 227 (2016) 1-52, https:// doi.org/10.1016/j.cis.2015.08.010. open in new tab
  23. P.A. Hunt, B. Kirchner, T. Welton, Characterising the electronic structure of ionic liquids: an examination of the 1-butyl-3-methylimidazolium chloride ion pair, Chemistry (Easton) 12 (2006) 6762-6775, https://doi.org/10.1002/ chem.200600103. open in new tab
  24. H. Weingartner, Understanding ionic liquids at the molecular level: facts, problems, and controversies, Angew. Chem. Int. Ed. Engl. 47 (2008) 654-670, https://doi.org/10.1002/anie.200604951. open in new tab
  25. J. Łuczak, M. Paszkiewicz-Gawron, M. Długoke˛cka, W. Lisowski, E. Grabowska, S. Makurat, J. Rak, A. Zaleska-Medynska, Visible-light photocatalytic activity of ionic liquid TiO2 spheres: effect of the ionic liquid's anion structure, ChemCatChem 9 (2017) 4377-4388, https://doi.org/10.1002/cctc.201700861. open in new tab
  26. M. Paszkiewicz-Gawron, M. Długokȩcka, W. Lisowski, M.C. Paganini, E. Giamello, T. Klimczuk, M. Paszkiewicz, E. Grabowska, A. Zaleska-Medynska, J. Luczak, Dependence between ionic liquid structure and mechanism of visible-light-induced activity of TiO2 obtained by ionic-liquid-assisted solvothermal synthesis, ACS Sustain. Chem. Eng. 6 (2018) 3927-3937, https://doi.org/10.1021/acssuschemeng.7b04291. open in new tab
  27. M. Paszkiewicz, J. Łuczak, W. Lisowski, P. Patyk, A. Zaleska-Medynska, The ILsassisted solvothermal synthesis of TiO2 spheres: The effect of ionic liquids on morphology and photoactivity of TiO2, Appl. Catal. B Environ. 184 (2016) 223-237, https://doi.org/10.1016/j.apcatb.2015.11.019. open in new tab
  28. M. Paszkiewicz-Gawron, A. Gołąbiewska, A. Pancielejko, W. Lisowski, J. Zwara, M. Paszkiewicz, A. Zaleska-Medynska, J. Łuczak, Impact of tetrazolium ionic liquid thermal decomposition in solvothermal reaction on the remarkable photocatalytic properties of TiO2 particles, Na nomaterials 9 (2019) 744, https://doi.org/10.3390/nano9050744. open in new tab
  29. A. Gołąbiewska, M. Paszkiewicz-Gawron, A. Sadzin´ ska, W. Lisowski, E. Grabowska, A. Zaleska-Medynska, J. Łuczak, Fabrication and photoactivity of ionic liquid-TiO2 structures for efficient visible-light-induced photocatalytic decomposition of organic pollutants in aqueous phase, Beilstein J. Nanotechnol. 9 (2018) 580-590, https://doi.org/10.3762/bjnano.9.54. open in new tab
  30. A. Gołąbiewska, M. Checa-Suárez, M. Paszkiewicz-Gawron, W. Lisowski, E. Raczuk, T. Klimczuk, Z. Polkowska, E. Grabowska, A. Zaleska -Medynska, J._ Łuczak, Highly active TiO2 microspheres formation in the presence of ethylammonium nitrate ionic liquid, Catalysts 8 (2018) 279, https://doi.org/ 10.3390/catal8070279. open in new tab
  31. C. Creutz, B.S. Brunschwig, N. Sutin, Interfacial charge-transfer absorption: semiclassical treatment, J. Phys. Chem. B 109 (2005) 10251-10260, https://doi.org/10.1021/jp050259+. open in new tab
  32. C. Creutz, B.S. Brunschwig, N. Sutin, Interfacial charge transfer absorption: Application to metal-molecule assemblies, Chem. Phys. 324 (2006) 244-258, https://doi.org/10.1016/j.chemphys.2005.12.015. open in new tab
  33. C. Creutz, B.S. Brunschwig, N. Sutin, Interfacial charge-transfer absorption: 3. Application to semiconductor molecule assemblies, J. Phys. Chem. B. 110 (2006) 25181-25190, https://doi.org/10.1021/jp063953d. open in new tab
  34. A. Mauri, V. Consonni, M. Pavan, R. Todeschini, DRAGON software: an easy approach to molecular descriptor, Commun. Math. Comput. Chem. (2006) 237- 248 (accessed March 13, 2019). open in new tab
  35. C.W. Yap, PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints, J. Comput. Chem. 32 (2011) 1466-1474, https:// doi.org/10.1002/jcc.21707. open in new tab
  36. J. Miller, J.C. Miller, Statistics and Chemometrics for Analytical Chemistry, 7th ed., Pearson Education Limited, 2018. open in new tab
  37. J.H. Ward, Hierarchical grouping to optimize an objective function, J. Am. Stat. Assoc. 58 (1963) 236-244, https://doi.org/10.1080/ 01621459.1963.10500845. open in new tab
  38. K. Odziomek, A. Rybinska, T. Puzyn, Unsupervised learning methods and similarity analysis in chemoinformatics, in: J. Leszczynski (Ed.), Handb. Comput. Chem., Springer International Publishing, Cham, 2017, pp. 2095-2132, https://doi.org/10.1007/978-3-319-27282-5_53. open in new tab
  39. A.C.D. Inc., Advanced Chemistry Development Inc., ACD/ChemSketch, 2010. www.acdlabs.com (accessed April 17, 2014).
  40. J. Gasteiger (Ed.), Handbook of Chemoinformatics, Wiley-VCH Verlag GmbH, Weinheim, Germany, 2003, https://doi.org/10.1002/ 9783527618279. open in new tab
  41. A. Steffen, T. Kogej, C. Tyrchan, O. Engkvist, Comparison of molecular fingerprint methods on the basis of biological profile data, J. Chem. Inf. Model. 49 (2009) 338-347, https://doi.org/10.1021/ci800326z. open in new tab
  42. K. Rataj, W. Czarnecki, S. Podlewska, A. Pocha, A. Bojarski, Substructural connectivity fingerprint and extreme entropy machines-a new method of compound representation and analysis, Molecules 23 (2018) 1242, https://doi. org/10.3390/molecules23061242. open in new tab
  43. R. Wehrens, Chemometrics with R, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011. 10.1007/978-3-642-17841-2. open in new tab
  44. R.G. Brereton, Chemometrics for Pattern Recognition, John Wiley & Sons Ltd, Chichester, UK, 2009. 10.1002/9780470746462. open in new tab
  45. Y. Xu, F. Gong, S.J. Dixon, R.G. Brereton, H.A. Soini, M.V. Novotny, E. Oberzaucher, K. Grammer, D.J. Penn, Application of di ssimilarity indices, principal coordinates analysis, and rank tests to peak tables in metabolomics of the gas chromatography/mass spectrometry of human sweat, Anal. Chem. 79 (2007) 5633-5641, https://doi.org/10.1021/ac070134w. open in new tab
  46. R Development Core Team, R: A Language and Environment for Statistical Computing 1 (2016) 409. 10.1007/978-3-540-74686-7. open in new tab
  47. K. Roy, S. Kar, R.N. Das, Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment, Elsevier Academic Press, Amsterdam, Boston, 2015. open in new tab
  48. A. Gajewicz, T. Puzyn, K. Odziomek, P. Urbaszek, A. Haase, C. Riebeling, A. Luch, M.A. Irfan, R. Landsiedel, M. van der Zande, H. Bouwmeester, Decision tree models to classify nanomaterials according to the DF4 nano grouping scheme, Nanotoxicology 12 (2018) 1-17, https://doi.org/10.1080/17435390. 2017.1415388. open in new tab
  49. OECD, OECD principles for the validation, for regulatory purposes, of Quantitative Structure-Activity Relationship models, in: Paris, 2004. http:// www.oecd.org/chemicalsafety/risk-assessment/37849783.pdf (accessed April 18, 2014). open in new tab
  50. E. Maria Siedlecka, M. Czerwicka, S. Stolte, P. Stepnowski, Stability of ionic liquids in application conditions, Curr. Org. Chem. 15 (2011) 1974-1991, https://doi.org/10.2174/138527211795703630. open in new tab
  51. H. Tokuda, K. Ishii, A. Bin, H. Susan, S. Tsuzuki, K. Hayamizu, M. Watanabe, M.A. B.H. Susan, S. Tsuzuki, K. Hayamizu, M. Watanabe, Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures, J. Phys. Chem. B 110 (2006) 2833-2839, https://doi.org/10.1021/ jp053396f. open in new tab
  52. J.M. Crosthwaite, M.J. Muldoon, J.K. Dixon, J.L. Anderson, J.F. Brennecke, Phase transition and decomposition temperatures, heat capacities and viscosities of pyridinium ionic liquids, J. Chem. Thermodyn. 37 (2005) 559-568, https://doi. org/10.1016/j.jct.2005.03.013. open in new tab
  53. M.C. Kroon, W. Buijs, C.J. Peters, G.-J. Witkamp, Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids, Thermochim. Acta 465 (2007) 40-47, https://doi.org/10.1016/j. tca.2007.09.003. open in new tab
  54. H. Ohtani, S. Ishimura, M. Kumai, Thermal decomposition behaviors of imidazolium-type ionic liquids studied by pyrolysis-gas chromatography, Anal. Sci. 24 (2008) 1335-1340. http://www.ncbi.nlm.nih.gov/pubmed/ 18845896. open in new tab
  55. J.G. Huddleston, A.E. Visser, W.M. Reichert, H.D. Willauer, G.A. Broker, R.D. Rogers, Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation, Green Chem. 3 (2001) 156-164, https://doi.org/10.1039/b103275p. open in new tab
  56. M. Williams, The Merck index: an encyclopedia of chemicals, drugs, and biologicals, Drug Dev. Res. 67 (2006), https://doi.org/10.1002/ddr.20159. 870-870. open in new tab
  57. Y. Cao, T. Mu, Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis, Ind. Eng. Chem. Res. 53 (2014) 8651- 8664, https://doi.org/10.1021/ie5009597. open in new tab
  58. M. Montanino, M. Carewska, F. Alessandrini, S. Passerini, G.B. Appetecchi, The role of the cation aliphatic side chain length in piperidinium bis (trifluoromethansulfonyl)imide ionic liquids, Electrochim. Acta 57 (2011) 153-159, https://doi.org/10.1016/j.electacta.2011.03.089. open in new tab
  59. J. Huang, C. Qin, S. Lei, J. Li, M. Li, J. Zhong, T. Wang, Ionic liquid assisted hydrothermal preparation of TiO2 with largel y enhanced photocatalytic performance originated from effective separation of photoinduced carriers, J. Phys. Chem. Solids 139 (2020) 109323, https://doi.org/10.1016/j. jpcs.2019.109323. open in new tab
  60. T.N. Ravishankar, M. do O. Vaz, T. Ramakrishnappa, S.R. Teixeira, J. Dupont, Ionic liquid-assisted hydrothermal synthesis of Nb/TiO2 nanocomposites for efficient photocatalytic hydrogen production and photodecolorization of Rhodamine B under UV-visible and visible light illuminations, Mater. Today Chem. 12 (2019) 373-385, https://doi.org/10.1016/j.mtchem.2019.04.001. open in new tab
  61. K. Manjunath, L.S. Reddy Yadav, T. Jayalakshmi, V. Reddy, H. Rajanaika, G. Nagaraju, Ionic liquid assisted hydrothermal synthesis of TiO2 nanoparticles: photocatalytic and antibacterial activity, J. Mater. Res. Technol. 7 (2018) 7-13, https://doi.org/10.1016/j.jmrt.2017.02.001. open in new tab
  62. L. Qi, J. Yu, M. Jaroniec, Enhanced and suppressed effects of ionic liquid on the photocatalytic activity of TiO2, Adsorption 19 (2013) 557-561, https://doi.org/ 10.1007/s10450-013-9478-7. open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 115 times

Recommended for you

Meta Tags