Hydrogen Production from Energy Poplar Preceded by MEA Pre-Treatment and Enzymatic Hydrolysis - Publication - Bridge of Knowledge

Search

Hydrogen Production from Energy Poplar Preceded by MEA Pre-Treatment and Enzymatic Hydrolysis

Abstract

The need to pre-treat lignocellulosic biomass prior to dark fermentation results primarily from the composition of lignocellulose because lignin hinders the processing of hard wood towards useful products. Hence, in this work a two-step approach for the pre-treatment of energy poplar, including alkaline pre-treatment and enzymatic saccharification followed by fermentation has been studied. Monoethanolamine (MEA) was used as the alkaline catalyst and diatomite immobilized bed enzymes were used during saccharification. The response surface methodology (RSM) method was used to determine the optimal alkaline pre-treatment conditions resulting in the highest values of both total released sugars (TRS) yield and degree of lignin removal. Three variable parameters (temperature, MEA concentration, time) were selected to optimize the alkaline pre-treatment conditions. The research was carried out using the Box-Behnken design. Additionally, the possibility of the re-use of both alkaline as well as enzymatic reagents was investigated. Obtained hydrolysates were subjected to dark fermentation in batch reactors performed by Enterobacter aerogenes ATCC 13048 with a final result of 22.99 mL H2/g energy poplar (0.6 mol H2/mol TRS).

Citations

  • 2 6

    CrossRef

  • 0

    Web of Science

  • 2 6

    Scopus

Cite as

Full text

download paper
downloaded 42 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
MOLECULES no. 23, edition 3029, pages 1 - 21,
ISSN: 1420-3049
Language:
English
Publication year:
2018
Bibliographic description:
Kucharska K., Łukajtis R., Słupek E., Cieśliński H., Rybarczyk P., Kamiński M.: Hydrogen Production from Energy Poplar Preceded by MEA Pre-Treatment and Enzymatic Hydrolysis// MOLECULES. -Vol. 23, iss. 3029 (2018), s.1-21
DOI:
Digital Object Identifier (open in new tab) 10.3390/molecules23113029
Bibliography: test
  1. Dincer, I.; Acar, C. Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrogen Energy 2015, 40, 11094-11111. [CrossRef] open in new tab
  2. Manish, S.; Banerjee, R. Comparison of biohydrogen production processes. Int. J. Hydrogen Energy 2008, 33, 279-286. [CrossRef] open in new tab
  3. Hallenbeck, P.C. Fermentative hydrogen production: Principles, progress, and prognosis. Int. J. Hydrogen Energy 2009, 34, 7379-7389. [CrossRef] open in new tab
  4. Argun, H.; Kargi, F. Bio-hydrogen production by different operational modes of dark and photo-fermentation: An overview. Int. J. Hydrogen Energy 2011, 36, 7443-7459. [CrossRef] open in new tab
  5. Pakarinen, O.; Lehtomäki, A.; Rintala, J. Batch dark fermentative hydrogen production from grass silage: The effect of inoculum, pH, temperature and VS ratio. Int. J. Hydrogen Energy 2008, 33, 594-601. [CrossRef] open in new tab
  6. Azman, N.F.; Abdeshahian, P.; Al-Shorgani, N.N.K.N.; Hamid, A.A.; Kalil, M.S.; Kaid, N.; Al-Shorgani, N.N.K.N.; Hamid, A.A.; Kalil, M.S. Production of hydrogen energy from dilute acid-hydrolyzed palm oil mill effluent in dark fermentation using an empirical model. Int. J. Hydrogen Energy 2016, 41, 1-12. [CrossRef] open in new tab
  7. Gadhe, A.; Sonawane, S.S.; Varma, M.N. Enhanced biohydrogen production from dark fermentation of complex dairy wastewater by sonolysis. Int. J. Hydrogen Energy 2015, 40, 9942-9951. [CrossRef] open in new tab
  8. Hu, C.C.; Giannis, A.; Chen, C.L.; Qi, W.; Wang, J.Y. Comparative study of biohydrogen production by four dark fermentative bacteria. Int. J. Hydrogen Energy 2013, 38, 15686-15692. [CrossRef] open in new tab
  9. Reilly, M.; Dinsdale, R.; Guwy, A. Mesophilic biohydrogen production from calcium hydroxide treated wheat straw. Int. J. Hydrogen Energy 2014, 39, 16891-16901. [CrossRef] open in new tab
  10. Gonzales, R.R.; Sivagurunathan, P.; Kim, S.H. Effect of severity on dilute acid pretreatment of lignocellulosic biomass and the following hydrogen fermentation. Int. J. Hydrogen Energy 2016, 41, 21678-21684. [CrossRef] open in new tab
  11. Do Nascimento Garritano, A.; de Sá, L.R.; Aguieiras, É.C.; Freire, D.M.; Ferreira-Leitão, V.S. Efficient biohydrogen production via dark fermentation from hydrolized palm oil mill effluent by non-commercial enzyme preparation. Int. J. Hydrogen Energy 2017, 42, 29166-29174. [CrossRef] open in new tab
  12. Thomas, L.; Joseph, A.; Gottumukkala, L.D. Xylanase and cellulase systems of Clostridium sp.: An insight on molecular approaches for strain improvement. Bioresour. Technol. 2014, 158, 343-350. [CrossRef] [PubMed] open in new tab
  13. Nguyen, T.A.D.; Kim, K.R.; Kim, M.S.; Sim, S.J. Thermophilic hydrogen fermentation from Korean rice straw by Thermotoga neapolitana. Int. J. Hydrogen Energy 2010, 35, 13392-13398. [CrossRef] open in new tab
  14. Cao, G.-L.; Zhao, L.; Wang, A.-J.; Wang, Z.-Y.; Ren, N.-Q. Single-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria. Biotechnol. Biofuels 2014, 7, 82. [CrossRef] [PubMed] open in new tab
  15. Cui, M.; Shen, J. Effects of acid and alkaline pretreatments on the biohydrogen production from grass by anaerobic dark fermentation. Int. J. Hydrogen Energy 2012, 37, 1120-1124. [CrossRef] open in new tab
  16. Talluri, S.; Raj, S.M.; Christopher, L.P. Consolidated bioprocessing of untreated switchgrass to hydrogen by the extreme thermophile Caldicellulosiruptor saccharolyticus DSM 8903. Bioresour. Technol. 2013, 139, 272-279. [CrossRef] [PubMed] open in new tab
  17. de Vrije, T.; de Haas, G.; Tan, G.B.; Keijsers, E.R.P.; Claassen, P.A.M. Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. Int. J. Hydrogen Energy 2002, 27, 1381-1390. [CrossRef] open in new tab
  18. Cui, M.; Yuan, Z.; Zhi, X.; Wei, L.; Shen, J. Biohydrogen production from poplar leaves pretreated by different methods using anaerobic mixed bacteria. Int. J. Hydrogen Energy 2010, 35, 4041-4047. [CrossRef] open in new tab
  19. Agbor, V.B.; Cicek, N.; Sparling, R.; Berlin, A.; Levin, D.B. Biomass pretreatment: Fundamentals toward application. Biotechnol. Adv. 2011, 29, 675-685. [CrossRef] [PubMed] open in new tab
  20. Łukajtis, R.; Kucharska, K.; Hołowacz, I.; Rybarczyk, P.; Wychodnik, K.; Słupek, E.; Nowak, P.; Kamiński, M. Comparison and Optimization of Saccharification Conditions of Alkaline Pre-Treated Triticale Straw for Acid and Enzymatic Hydrolysis Followed by Ethanol Fermentation. Energies 2018, 11, 639. [CrossRef] open in new tab
  21. Michalska, K.; Ledakowicz, S. Alkali pre-treatment of Sorghum Moench for biogas production. Chem. Pap. 2013, 67, 1130-1137. [CrossRef] open in new tab
  22. Sannigrahi, P.; Ragauskas, A.J.; Tuskan, G.A. Poplar as a feedstock for biofuels: A review of compositional characteristics. Biofuels Bioprod. Biorefin. 2010, 4, 209-226. [CrossRef] open in new tab
  23. Fenila, F.; Yogendra, S. Optimal control of enzymatic hydrolysis of lignocellulosic biomass. Resour. Technol. 2016, 2, S96-S104. [CrossRef] open in new tab
  24. Pan, C.; Zhang, S.; Fan, Y.; Hou, H. Bioconversion of corncob to hydrogen using anaerobic mixed microflora. Int. J. Hydrogen Energy 2010. [CrossRef] open in new tab
  25. Bansal, P.; Hall, M.; Realff, M.J.; Lee, J.H.; Bommarius, A.S. Modeling cellulase kinetics on lignocellulosic substrates. Biotechnol. Adv. 2009, 27, 833-848. [CrossRef] [PubMed] open in new tab
  26. Brodeur, G.; Yau, E.; Badal, K.; Collier, J.; Ramachandran, K.B.; Ramakrishnan, S. Chemical and Physicochemical Pretreatment of Lignocellulosic Biomass: A Review. Enzyme Res. 2011, 2011, e787532. [CrossRef] [PubMed] open in new tab
  27. Kucharska, K.; Rybarczyk, P.; Hołowacz, I.; Łukajtis, R.; Glinka, M.; Kamiński, M. Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes. Molecules 2018, 23, 2937. [CrossRef] [PubMed] open in new tab
  28. Keshav, P.K.; Shaik, N.; Koti, S.; Linga, V.R. Bioconversion of alkali delignified cotton stalk using two-stage dilute acid hydrolysis and fermentation of detoxified hydrolysate into ethanol. Ind. Crops Prod. 2016, 91, 323-331. [CrossRef] open in new tab
  29. Wyman, C.E.; Dale, B.E.; Elander, R.T.; Holtzapple, M.; Ladisch, M.R.; Lee, Y.Y. Coordinated development of leading biomass pretreatment technologies. Bioresour. Technol. 2005, 96, 1959-1966. [CrossRef] [PubMed] open in new tab
  30. Liu, L.; Chang, H.M.; Jameel, H.; Park, S. Furfural production from biomass pretreatment hydrolysate using vapor-releasing reactor system. Bioresour. Technol. 2018, 252, 165-171. [CrossRef] [PubMed] open in new tab
  31. Oliva, M.; Manzanares, P.; Ballesteros, I.; Chamorro, M.Á.; Felicia, S.; Ballesteros, M.; Moreno, A.D. A Sequential Steam Explosion and Reactive Extrusion Pretreatment for Lignocellulosic Biomass Conversion within a Fermentation-Based Biorefinery Perspective. Fermentation 2017, 3, 15. [CrossRef] open in new tab
  32. Coz, A.; Llano, T.; Cifrián, E.; Viguri, J.; Maican, E.; Sixta, H. Physico-Chemical Alternatives in Lignocellulosic Materials in Relation to the Kind of Component for Fermenting Purposes. Materials 2016, 9, 574. [CrossRef] [PubMed] open in new tab
  33. Zha, Y.; Punt, P.J. Exometabolomics Approaches in Studying the Application of Lignocellulosic Biomass as Fermentation Feedstock. Metabolites 2014, 3, 119-143. [CrossRef] [PubMed] open in new tab
  34. Zheng, J.; Rehmann, L. Extrusion Pretreatment of Lignocellulosic Biomass: A Review. Int. J. Mol. Sci. 2014, 15, 18967-18984. [CrossRef] [PubMed] open in new tab
  35. Fillat, Ú.; Ibarra, D.; Eugenio, E.; Moreno, A.D.; Tom, E.; Mart, R. Laccases as a Potential Tool for the Efficient Conversion of Lignocellulosic Biomass: A Review. Fermentation 2017, 3, 17. [CrossRef] open in new tab
  36. Kucharska, K.; Hołowacz, I.; Konopacka-Łyskawa, D.; Rybarczyk, P.; Kami, M. Key issues in modeling and optimization of lignocellulosic biomass fermentative conversion to gaseous biofuels. Renew. Energy 2018, 129, 384-408. [CrossRef] open in new tab
  37. Lübken, M.; Wichern, M.; Schlattmann, M.; Gronauer, A.; Horn, H. Modelling the energy balance of an anaerobic digester fed with cattle manure and renewable energy crops. Water Res. 2007, 41, 4085-4096. [CrossRef] [PubMed] open in new tab
  38. Lauwers, J.; Appels, L.; Thompson, I.P.; Degrève, J.; Van Impe, J.F.; Dewil, R. Mathematical modelling of anaerobic digestion of biomass and waste: Power and limitations. Prog. Energy Combust. Sci. 2013, 39, 383-402. [CrossRef] open in new tab
  39. Wang, Z.; Cheng, J.J. Lime pretreatment of coastal bermudagrass for bioethanol production. Energy Fuels 2011, 25, 1830-1836. [CrossRef] open in new tab
  40. Mohnot, D.; Biswas, R.; Bisaria, V.S. Enzymatic Hydrolysis of Lignocellulosic Residues. In Biomass Fractionation Technologies for Lignocellulosic Feedstock Based Biorefinery;
  41. Mussatto, S.I., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 543-560. ISBN 978-0-12-80-2323-5.
  42. Crespo, C.F.; Badshah, M.; Alvarez, M.T.; Mattiasson, B. Ethanol production by continuous fermentation of D-(+)-cellobiose, D-(+)-xylose and sugarcane bagasse hydrolysate using the thermoanaerobe Caloramator boliviensis. Bioresour. Technol. 2012, 103, 186-191. [CrossRef] [PubMed] open in new tab
  43. Cao, G.L.; Guo, W.Q.; Wang, A.J.; Zhao, L.; Xu, C.J.; Zhao, Q.L.; Ren, N.Q. Enhanced cellulosic hydrogen production from lime-treated cornstalk wastes using thermophilic anaerobic microflora. Int. J. Hydrogen Energy 2012, 37, 13161-13166. [CrossRef] open in new tab
  44. Chang, S.; Li, J.Z.; Liu, F. Evaluation of different pretreatment methods for preparing hydrogen-producing seed inocula from waste activated sludge. Renew. Energy 2011, 36, 1517-1522. [CrossRef] open in new tab
  45. Cheng, X.Y.; Li, Q.; Liu, C.Z. Coproduction of hydrogen and methane via anaerobic fermentation of cornstalk waste in continuous stirred tank reactor integrated with up-flow anaerobic sludge bed. Bioresour. Technol. 2012, 114, 327-333. [CrossRef] [PubMed] open in new tab
  46. Fan, Y.T.; Zhang, G.S.; Guo, X.Y.; Xing, Y.; Fan, M.H. Biohydrogen-production from beer lees biomass by cow dung compost. Biomass Bioenergy 2006, 30, 493-496. [CrossRef] open in new tab
  47. Song, Z.X.; Dai, Y.; Fan, Q.L.; Li, X.H.; Fan, Y.T.; Hou, H.W. Effects of pretreatment method of natural bacteria source on microbial community and bio-hydrogen production by dark fermentation. Int. J. Hydrogen Energy 2012, 37, 5631-5636. [CrossRef] open in new tab
  48. Chi, C.; Chang, H.M.; Li, Z.; Jameel, H.; Zhang, Z. A method for rapid determination of sugars in lignocellulose prehydrolyzate. BioResources 2013, 8, 172-181. [CrossRef] open in new tab
  49. Jönsson, L.J.; Martín, C. Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects. Bioresour. Technol. 2016, 199, 103-112. [CrossRef] [PubMed] open in new tab
  50. Jönsson, L.J.; Alriksson, B.; Nilvebrant, N.-O. Bioconversion of lignocellulose: Inhibitors and detoxification. Biotechnol. Biofuels 2013, 6, 16. [CrossRef] [PubMed] open in new tab
  51. Binod, P.; Janu, K.U.; Sindhu, R.; Pandey, A. Hydrolysis of Lignocellulosic Biomass for Bioethanol Production, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2011; pp. 229-250. ISBN 9780123850997. open in new tab
  52. Tu, M.; Chandra, R.P.; Saddler, J.N. Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated lodgepole pine. Biotechnol. Prog. 2007, 23, 1130-1137. [CrossRef] [PubMed] open in new tab
  53. Cabrera, M.P.; Assis, C.R.D.; Neri, D.F.M.; Pereira, C.F.; Soria, F. High sucrolytic activity by invertase immobilized onto magnetic diatomaceous earth nanoparticles. Biotechnol. Rep. 2017, 14, 38-46. [CrossRef] [PubMed] open in new tab
  54. David, A.E.; Sun, N.; Yang, V.C.; Yang, A.J. Chemically surface modified gel (CSMG): An excellent enzyme-immobilization matrix for industrial processes. J. Biotechnol. 2006, 125, 395-407. [CrossRef] [PubMed] open in new tab
  55. Ginkel, S.V.; Sung, S.; Lay, J.J. Biohydrogen production as a function of pH and substrate concentration. Environ. Sci. Technol. 2001, 35, 4726-4730. [CrossRef] [PubMed] open in new tab
  56. Singh, A.; Bajar, S.; Bishnoi, N.R. Physico-chemical pretreatment and enzymatic hydrolysis of cotton stalk for ethanol production by Saccharomyces cerevisiae. Bioresour. Technol. 2017, 244, 71-77. [CrossRef] [PubMed] open in new tab
  57. McIntosh, S.; Vancov, T. Optimisation of dilute alkaline pretreatment for enzymatic saccharification of wheat straw. Biomass Bioenergy 2011, 35, 3094-3103. [CrossRef] open in new tab
  58. Gonzales, R.R.; Sivagurunathan, P.; Parthiban, A.; Kim, S.H. Optimization of substrate concentration of dilute acid hydrolyzate of lignocellulosic biomass in batch hydrogen production. Int. Biodeterior. Biodegrad. 2016, 113, 22-27. [CrossRef] open in new tab
  59. Hou, Q.; Ju, M.; Li, W.; Liu, L.; Chen, Y.; Yang, Q.; Zhao, H. Pretreatment of lignocellulosic biomass with ionic liquids and ionic liquid-based solvent systems. Molecules 2017, 22, 490. [CrossRef] [PubMed] open in new tab
  60. Yang, H.Y.; Wang, K.; Song, X.L.; Xu, F.; Sun, R.C. Enhanced enzymatic hydrolysis of triploid poplar following stepwise acidic pretreatment and alkaline fractionation. Process Biochem. 2012, 47, 619-625. [CrossRef] open in new tab
  61. Axelsson, L.; Franzén, M.; Ostwald, M.; Berndes, G.; Lakshmi, G.; Ravindranath, N.H. Perspective: Jatropha cultivation in southern India: Assessing farmers' experiences. Biofuel Bioprod. Biorefin. 2012, 6, 246-256. [CrossRef] open in new tab
  62. Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of structural carbohydrates and lignin in Biomass. Lab. Anal. Proced. 2018, 1617, 1-6. open in new tab
  63. Van Wychen, S.; Laurens, L.M.L. Determination of Total Solids and Ash in Algal Biomass. Technical Report. Available online: https://www.nrel.gov/docs/fy16osti/60956.pdf (accessed on 18 November 2018). open in new tab
  64. Molecules 2018, 23, 3029 20 of 21 open in new tab
  65. Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass. Technical Report. Available online: https://www.nrel.gov/docs/ gen/fy13/42618.pdf (accessed on 18 November 2018). open in new tab
  66. Sluiter, A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Extractives in Biomass. Technical Report. Available online: https://www.nrel.gov/docs/gen/fy08/42619.pdf (accessed on 18 April 2018). open in new tab
  67. Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Ash in Biomass. Technical Report. Available online: https://www.nrel.gov/docs/gen/fy08/42622.pdf (accessed on 18 November 2018). open in new tab
  68. Cruz, J.M.; Domínguez, J.M.; Domínguez, H.; Parajó, J.C. Solvent extraction of hemicellulosic wood hydrolysates: A procedure useful for obtaining both detoxified fermentation media and polyphenols with antioxidant activity. Food Chem. 1999, 67, 147-153. [CrossRef] open in new tab
  69. Lee, K.M.; Min, K.; Choi, O.; Kim, K.Y.; Woo, H.M.; Kim, Y.; Han, S.O.; Um, Y. Electrochemical detoxification of phenolic compounds in lignocellulosic hydrolysate for Clostridium fermentation. Bioresour. Technol. 2015, 187, 228-234. [CrossRef] [PubMed] open in new tab
  70. Xing, Y.; White, P.J. Identification and function of antioxidants from oat groats and hulls. J. Am. Oil Chem. Soc. 1997, 74, 303-307. [CrossRef] open in new tab
  71. Lin, R.; Cheng, J.; Ding, L.; Song, W.; Zhou, J.; Cen, K. Inhibitory effects of furan derivatives and phenolic compounds on dark hydrogen fermentation. Bioresour. Technol. 2015, 196, 250-255. [CrossRef] [PubMed] open in new tab
  72. Fernández de Simón, B.; Cadahía, E.; Conde, E.; García-Vallejo, M.C. Low Molecular Weight Phenolic Compounds in Spanish Oak Woods. J. Agric. Food Chem. 1996, 44, 1507-1511. [CrossRef] open in new tab
  73. Väljamäe, P.; Pettersson, G.; Johansson, G. Mechanism of substrate inhibition in cellulose synergistic degradation. Eur. J. Biochem. 2001, 268, 4520-4526. [CrossRef] [PubMed] open in new tab
  74. RStudio Team. RStudio: Integrated Development for R; open in new tab
  75. RStudio, Inc.: Boston, MU, USA, 2015; Available online: http://www.rstudio.org/ (accessed on 12 January 2018). open in new tab
  76. Zhu, Z.; Rezende, C.A.; Simister, R.; McQueen-Mason, S.J.; Macquarrie, D.J.; Polikarpov, I.; Gomez, L.D. Efficient sugar production from sugarcane bagasse by microwave assisted acid and alkali pretreatment. Biomass Bioenergy 2016, 93, 269-278. [CrossRef] open in new tab
  77. Yu, Q.; Zhuang, X.; Wang, W.; Qi, W.; Wang, Q.; Tan, X.; Kong, X.; Yuan, Z. Hemicellulose and lignin removal to improve the enzymatic digestibility and ethanol production. Biomass Bioenergy 2016, 94, 105-109. [CrossRef] open in new tab
  78. Rafał, Ł.; Hołowacz, I.; Kucharska, K.; Glinka, M.; Rybarczyk, P. Hydrogen production from biomass using dark fermentation. Renew. Sustain. Energy Rev. 2018, 91, 665-694. [CrossRef] open in new tab
  79. Sun, Y.; Cheng, J. Hydrolysis of lignocellulosic materials for ethanol production: A review. Bioresour. Technol. 2002, 83, 1-11. [CrossRef] open in new tab
  80. McIntosh, S.; Vancov, T. Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Bioresour. Technol. 2010, 101, 6718-6727. [CrossRef] [PubMed] open in new tab
  81. Łukajtis, R.; Rybarczyk, P.; Kucharska, K.; Konopacka-Łyskawa, D.; Słupek, E.; Wychodnik, K.; Kamiński, M. Optimization of saccharification conditions of lignocellulosic biomass under alkaline pre-treatment and enzymatic hydrolysis. Energies 2018, 11, 886. [CrossRef] open in new tab
  82. Lin, Y.; Tanaka, S. Ethanol fermentation from biomass resources: Current state and prospects. Appl. Microbiol. Biotechnol. 2006, 69, 627-642. [CrossRef] [PubMed] open in new tab
  83. Mohamad, N.R.; Marzuki, N.H.C.; Buang, N.A.; Huyop, F.; Wahab, R.A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Biotechnol. Equip. 2015, 29, 205-220. [CrossRef] [PubMed] open in new tab
  84. Jesionowski, T.; Zdarta, J.; Krajewska, B. Enzyme immobilization by adsorption: A review. Adsorption 2014, 20, 801-821. [CrossRef] open in new tab
  85. Datta, S.; Christena, L.R.; Rajaram, Y.R.S. Enzyme immobilization: An overview on techniques and support materials. 3 Biotech 2013, 3, 1-9. [CrossRef] [PubMed] open in new tab
  86. Zhang, B.; Shahbazi, A. Recent developments in pretreatment technologies for production of lignocellulosic biofuels. J. Pet Environ. Biotechnol. 2011, 2, 111. [CrossRef] open in new tab
  87. De Gioannis, G.; Muntoni, A.; Polettini, A.; Pomi, R. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Manag. 2013, 33, 1345-1361. [CrossRef] [PubMed] open in new tab
  88. Kim, M.-S.; Cha, J.; Kim, D.-H. Biohydrogen, 1st ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2013; Chapter 11; pp. 259-283. ISBN 978-0-444-59555-3. open in new tab
  89. Kim, J.H.; Block, D.E.; Mills, D.A. Simultaneous consumption of pentose and hexose sugars: An optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl. Microbiol. Biotechnol. 2010, 88, 1077-1085. [CrossRef] [PubMed] open in new tab
  90. De Gioannis, G.; Friargiu, M.; Massi, E.; Muntoni, A.; Polettini, A.; Pomi, R.; Spiga, D. Biohydrogen production from dark fermentation of cheese whey: Influence of pH. Int. J. Hydrogen Energy 2014, 39, 20930-20941. [CrossRef] open in new tab
  91. Davila-Vazquez, G.; Cota-Navarro, C.B.; Rosales-Colunga, L.M.; de León-Rodríguez, A.; Razo-Flores, E. Continuous biohydrogen production using cheese whey: Improving the hydrogen production rate. Int. J. Hydrogen Energy 2009, 34, 4296-4304. [CrossRef] open in new tab
  92. Hakobyan, M.; Sargsyan, H.; Bagramyan, K. Proton translocation coupled to formate oxidation in anaerobically grown fermenting Escherichia coli. Biophys. Chem. 2005, 115, 55-61. [CrossRef] [PubMed] open in new tab
  93. Hallenbeck, P.C. Biohydrogen, 1st ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2013; pp. 25-43. ISBN 9780444595553. open in new tab
  94. Mu, Y.; Yu, H.Q.; Wang, G. Evaluation of three methods for enriching H 2 -producing cultures from anaerobic sludge. Enzyme Microb. Technol. 2007, 40, 947-953. [CrossRef] open in new tab
  95. Lo, Y.C.; Chen, W.M.; Hung, C.H.; Der Chen, S.; Chang, J.S. Dark H 2 fermentation from sucrose and xylose using H 2 -producing indigenous bacteria: Feasibility and kinetic studies. Water Res. 2008, 42, 827-842. [CrossRef] [PubMed] open in new tab
  96. Nielsen, A.T.; Amandusson, H.; Bjorklund, R.; Dannetun, H.; Ejlertsson, J.; Ekedahl, L.G.; Lundstrom, I.; Svensson, B.H. Hydrogen production from organic waste. Int. J. Hydrogen Energy 2001, 26, 547-550. [CrossRef] open in new tab
  97. Kumar, N.; Das, D. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem. 2000, 35, 589-593. [CrossRef] open in new tab
  98. Zhang, X.; Ye, X.; Guo, B.; Finneran, K.T.; Zilles, J.L.; Morgenroth, E. Lignocellulosic hydrolysates and extracellular electron shuttles for H 2 production using co-culture fermentation with Clostridium beijerinckii and Geobacter metallireducens. Bioresour. Technol. 2013, 147, 89-95. [CrossRef] [PubMed] open in new tab
  99. Boni, M.R.; Sbaffoni, S.; Tuccinardi, L. The influence of slaughterhouse waste on fermentative H 2 production from food waste: Preliminary results. Waste Manag. 2013, 33, 1362-1371. [CrossRef] [PubMed] open in new tab
  100. Gomez, X.; Moran, A.; Cuetos, M.J.; Sanchez, M.E. The production of hydrogen by dark fermentation of municipal solid wastes and slaughterhouse waste: A two-phase process. J. Power Sources 2006, 157, 727-732. [CrossRef] open in new tab
  101. Pandu, K.; Joseph, S. Comparisons and Limitations of Biohydrogen Production Processes: A Review. Int. J. Adv. Eng. Technol. 2012, 7, 59-71. open in new tab
  102. Mu, Y.; Yu, H.-Q. Simulation of biological hydrogen production in a UASB reactor using neural network and genetic algorithm. Int. J. Hydrog. Energy 2007, 32, 3308-3314. [CrossRef] open in new tab
  103. Kumar, G.; Bakonyi, P.; Periyasamy, S.; Kim, S.H.; Nemestóthy, N.; Bélafi-Bakó, K. Lignocellulose biohydrogen: Practical challenges and recent progress. Renew. Sustain. Energy Rev. 2015, 44, 728-737. [CrossRef] open in new tab
  104. Yu, H. Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int. J. Hydrogen Energy 2002, 27, 1359-1365. [CrossRef] open in new tab
  105. Boni, M.R.; Sbaffoni, S.; Tuccinardi, L.; Viotti, P. Development and calibration of a model for biohydrogen production from organic waste. Waste Manag. 2013, 33, 1128-1135. [CrossRef] [PubMed] open in new tab
  106. Gómez, X.; Cuetos, M.J.; Prieto, J.I.; Morán, A. Bio-hydrogen production from waste fermentation: Mixing and static conditions. Renew. Energy 2009, 34, 970-975. [CrossRef] open in new tab
  107. Sample Availability: Samples of the biomass and hydrolysates are available from the authors. © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 192 times

Recommended for you

Meta Tags