Improved degradation of etodolac in the presence of core-shell ZnFe2O4/SiO2/TiO2 magnetic photocatalyst - Publication - Bridge of Knowledge

Search

Improved degradation of etodolac in the presence of core-shell ZnFe2O4/SiO2/TiO2 magnetic photocatalyst

Abstract

In the present study, susceptibility to photocatalytic degradation of etodolac, 1,8-diethyl-1,3,4,9 – tetrahydro pyran - [3,4-b] indole-1-acetic acid, which is a non-steroidal anti-inflammatory drug frequently detected in an aqueous environment, was for the first time investigated. The obtained p-type TiO2-based photocatalyst coupled with zinc ferrite nanoparticles in a core-shell structure improves the separation and recovery of nanosized TiO2 photocatalyst. The characterization of ZnFe2O4/SiO2/TiO2, including XRD, XPS, TEM, BET, DR/UV-Vis, impedance spectroscopy and photocatalytic analysis, showed that magnetic photocatalyst containing anatase phase revealed markedly improved etodolac decomposition and mineralization measured as TOC removal compared to photolysis reaction. The effect of irradiation and pH range on photocatalytic decomposition of etodolac was studied. The most efficient degradation of etodolac was observed under simulated solar light for a core-shell ZnFe2O4/SiO2/TiO2 magnetic photocatalyst at pH above 4 (pKa=4.7) and below 7. The irradiation of etodolac solution in a broader light range revealed a synergetic effect on its photodegradation performance. After only 20 min of degradation, about 100% of etodolac was degraded. Based on the photocatalytic analysis in the presence of scavengers and HPLC analysis, the transformation intermediates and possible photodegradation pathways of etodolac were studied. It was found that ∙O2- attack on C2-C3 bond inside pyrrole ring results mostly in the hydroxylation of the molecule, which next undergoes CH2COOH detachment to give 1,9-diethyl-3,4-dihydro-pyrano[3,4-b]indol-4a-ol. The obtained compound should further undergo subsequent hydropyran and pyrrole ring breaking to give a family of benzene derivatives.

Citations

  • 3 7

    CrossRef

  • 0

    Web of Science

  • 3 8

    Scopus

Cite as

Full text

download paper
downloaded 97 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
SCIENCE OF THE TOTAL ENVIRONMENT no. 724, pages 1 - 12,
ISSN: 0048-9697
Language:
English
Publication year:
2020
Bibliographic description:
Mrotek E., Dudziak S., Malinowska I., Pelczarski D., Ryżyńska Z., Zielińska-Jurek A.: Improved degradation of etodolac in the presence of core-shell ZnFe2O4/SiO2/TiO2 magnetic photocatalyst// SCIENCE OF THE TOTAL ENVIRONMENT -Vol. 724, (2020), s.1-12
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.scitotenv.2020.138167
Bibliography: test
  1. Abdel-Wahab, A.M., Al-Shirbini, A.S., Mohamed, O., Nasr, O., 2017. Journal of Photochem- istry and Photobiology A:Chemistry 347, 186-198. open in new tab
  2. Afsah, E.M., Fadda, A.A., Bondock, S., Hammouda, M.M., 2015. Zeitschrift Fur Naturforsch, Sect. B Journal of Chemical Sciences 70, 385-391. open in new tab
  3. Amtout, A., Leonelli, R., 1995. Phys. Rev. B 51, 6842. open in new tab
  4. Babu, R., Kelkar, S., Kashid, V., Achary, S., Salunke, H., Gupta, N., 2014. RSC Adv. 4, 33435-33445. open in new tab
  5. Brocks, D.R., Jamali, F., 1994. Etodolac clinical pharmacokinetics. Clin. Pharmacokinet. 26, 259-274. open in new tab
  6. Conrado, J., Fresno, F., Hernandez-Alonso, M., Portela, R., 2013. Green Energy and Technol- ogy. Springer. open in new tab
  7. Farner Budarz, J., Turolla, A., Piasecki, A.F., Bottero, J.Y., Antonelli, M., Wiesner, M.R., 2017. Langmuir 33, 2770. open in new tab
  8. Folli, A., Pochard, I., Nonat, A., Jakobsen, U.H., Shepherd, A.M., Macphee, D.E., 2010. J. Am. Ceram. Soc. 93, 3360-3369. open in new tab
  9. Gadade, D., Pekamwar, S., LahotI, S.R., PatnI, S.D., Sarode, M.C., 2017. Marmara Pharma- ceutical Journal 21, 78-88. open in new tab
  10. Gambarotti, C., Melone, L., Punta, C., 2012. Semiconductors in Organic Photosynthesis, Ar- tificial Photosynthesis February 24th. open in new tab
  11. Guillard, C., Puzenat, E., Lachheb, H., Houas, A., Herrmann, J.-M., 2005. International Jour- nal of Photoenergy 7, 1. open in new tab
  12. Guzela, E.Y., Cevika, F., Daglioglu, N., 2019. Human and Ecological Risk Assessment: An In- ternational Journal 25, 1980-1995. open in new tab
  13. Hoshina, K., Horiyama, S., Matsunaga, H., Haginaka, J., 2011. J. Pharm. Biomed. Anal. 55, 916-922. open in new tab
  14. Howard, P.H., Muir, D.C.G., 2011. Environmental Science & Technology 45, 6938-6946. open in new tab
  15. Iesce, M., Cermola, F., Temussi, F., 2005. Curr. Org. Chem. 9, 109-139. open in new tab
  16. Kanakaraju, D., Glass, B.D., Oelgemöller, M., 2018. J. Environ. Manag. 219, 189-207. open in new tab
  17. Kurian, J., Mathew, M.J., 2018. J. Magn. Magn. Mater. 451, 121. Lee, Y.J., Padula, J., Lee, H., 1988. J. Pharm. Sci. 60, 1193-1196.
  18. Lee, S.A., Choo, K.H., Lee, C.H., Lee, H.I., Hyeon, T., Choi, W., Kwon, H.H., 2001. Ind. Eng. Chem. Res. 40, 1712-1719. open in new tab
  19. Lee, J.S., Cha, J.M., Yoon, H.Y., Lee, J.K., Kim, Y.K., 2015. Sci. Rep. 5.
  20. Liu, Y., Tourbin, M., Lachaize, S., Guiraud, P., 2013. Chemosphere 92, 681-687. open in new tab
  21. Mansour, S.A., 2019. Ceram. Int. 45, 2893-2898. open in new tab
  22. Martra, G., 2000. Applied Catalysis A. General 200, 275-285. open in new tab
  23. Mascolo, M.C., Pei, Y., Ring, T.A., 2013. Materials 6, 5549. open in new tab
  24. Mateo, C.A., Urrutia, A., Rodríguez, J.G., Fonseca, I., Cano, F.H., 1996. J. Org. Chem. 61, 810-812. open in new tab
  25. Mathew, S., Kumar Prasad, A., Benoy, T., 2012. J. Fluoresc. 22, 1563-1569. open in new tab
  26. McClay, K., Boss, C., Keresztes, I., Steffan, R.J., 2005. Appl. Environ. Microbiol. 71, 5476-5483. open in new tab
  27. Meichtry, J.M., Quici, N., Mailhot, G., Litter, M.I., 2011. Applied Catalysis B Environmental 102, 555-562. open in new tab
  28. Meng, X., Zhuang, Y., Tang, H., Lu, C., 2018. J. Alloys Compd. 761, 15-23. open in new tab
  29. Mishra, Priti, Patnaik, Sulagna, Parida, Kulamani, 2019. Catalysis Science & Technology https://doi.org/10.1039/C8CY02462F. open in new tab
  30. Mozaffari, M., Eghbali Arani, M., Amighian, J., 2010. J. Magn. Magn. Mater. 322, 3240. Nowotny, M., Bogdanoff, P., Dittrich, T., Fiechter, S., Fujishima, A., Tributsch, H., 2010. Mater. Lett. 64, 928-930.
  31. Ohno, T., Sarukawa, K., Tokieda, K., Matsumura, M.J., 2001. J. Catal. 203, 82-86. open in new tab
  32. Ohtani, B., 2010. J Photochem Photobiol C: Photochem Rev 11, 157-178. open in new tab
  33. Ohtani, B., Ogawa, Y., Nishimoto, S., 1997. J. Phys. Chem. B 5647, 3746-3752. open in new tab
  34. Passananti, M., Lavorgna, M., Iesce, M.R., DellaGreca, M., Brigante, M., Criscuolo, E., Cermola, F., Isidori, M., 2015. Sci. Total Environ. 518-519, 258-265. open in new tab
  35. Pérez-López, G., Ramírez-López, R., Viveros, T., 2018. Catal. Today 305, 182-191. Porter, J.F., Li, Y.G., Chan, C.K., 1995. J. Mater. Sci. 34, 1523. Saxena, D., Damale, S., Datar, A., 2016. Int J Pharm Pharm Sci 8, 127-135. open in new tab
  36. Schütze, M., Herrmann, H., 2004. Phys. Chem. Chem. Phys. 965-971. open in new tab
  37. Scribner, L.L., 1990. The Measurement and Correction of Electrolyte Resistance in Electro- chemical Tests. ASTM International. open in new tab
  38. Shanmugavani, A., Kalai Selvan, R., Layek, S., Sanjeeviraja, C., 2014. J. Magn. Magn. Mater. 354, 363. open in new tab
  39. Tang, H., Levy, F., Berger, H., Schmid, P.E., 1995. Phys. Rev. B 52, 7771. Tehrani, F.S., Daadmehr, V., Rezakhani, A.T., Akbarnejad, R.H., Gholipour, S., 2012. J. Supercond. Nov. Magn. 25, 2443-2455.
  40. Teimouri, M., Husain, S.W., Saber-Tehrani, M., Aberoomand-Azar, P., 2019. Sep. Sci. Technol. 54. open in new tab
  41. Temussi, F., Cermola, F., DellaGreca, M., Iesce, M.R., Passananti, P., Previtera, L., Zarrelli, A., 2011. J. Pharm. Biomed. Anal. 56, 678-683. open in new tab
  42. Tomita, K., Kawano, M., 1993. Rep. Fac. Sci. Kagoshima Univ 26, 1-16.
  43. Valenti, T.W., Perez-Hurtado, P., Chambliss, C.K., Brooks, B.W., 2009. Environ. Toxicol. Chem. 28, 2685-2694. open in new tab
  44. Watanabe, H., Tamura, I., Abe, R., Takanobu, H., Nakamura, A., Suzuki, T., Hirose, A., Nishimura, T., Tatarazako, N., 2016. Environ. Toxicol. Chem. 35, 996-1006. open in new tab
  45. Xu, J., Liang, L., Zheng, H., Chi, Y.R., Tong, R., 2019. Nat. Commun. 10, 1-11. https://doi.org/ 10.1038/s41467-019-12768-4. open in new tab
  46. Yao, C., Zeng, Q., Goya, G.F., Torres, T., Liu, J., Wu, H., Ge, M., Zeng, Y., Wang, Y., Jiang, J.Z., 2007. J. Phys. Chem. C 111, 12274. open in new tab
  47. Zeldes, H., Livingston, R., 1971. J. Am. Chem. Soc. 93, 1082-1085. open in new tab
  48. Zhang, Q., Gao, L., Guo, J., 2000. Appl. Catal. B Environ. 26, 207.
  49. Zhang, G., He, X., Nadagouda, M.N., O'Shea, K.E., Dionysiou, D.D., 2015. Water Res. 73, 353. Zhu, Y., Ding, C., Ma, G., Du, Z., 1998. J. Solid State Chem. 139, 124-127.
  50. Zielińska-Jurek, A., Bielan, Z., Dudziak, S., Wolak, I., Sobczak, Z., Klimczuk, T., Nowaczyk, G., Hupka, J., 2017a. Catalysts 7, 360. open in new tab
  51. Zielińska-Jurek, A., Bielan, Z., Wysocka, I., Strychalska, J., Janczarek, M., Klimczuk, T., 2017b. J. Environ. Manag. 195, 157-165. open in new tab
Verified by:
Gdańsk University of Technology

seen 227 times

Recommended for you

Meta Tags