Improving Accuracy of Contactless Respiratory Rate Estimation by Enhancing Thermal Sequences with Deep Neural Networks
Abstract
Estimation of vital signs using image processing techniques have already been proved to have a potential for supporting remote medical diagnostics and replacing traditional measurements that usually require special hardware and electrodes placed on a body. In this paper, we further extend studies on contactless Respiratory Rate (RR) estimation from extremely low resolution thermal imagery by enhancing acquired sequences using Deep Neural Networks (DNN). To perform extensive benchmark evaluation, we acquired two thermal datasets using FLIR® cameras with a spatial resolution of 80 × 60 and 320 × 240 from 71 volunteers in total. In-depth analysis of the proposed Convolutional-based Super Resolution model showed that for images downscaled with a factor of 2 and then super-resolved using Deep Learning (DL) can lead to better RR estimation accuracy than from original high-resolution sequences. In addition, if an estimator based on a dominating peak in the frequency domain is used, SR can outperform original data for a down-scale factor of 4 and images as small as 20 × 15 pixels. Our study also showed that RR estimation accuracy is better for super-resolved data than for images with color changes magnified using algorithms previously applied in the literature for enhancing vital signs patterns.
Citations
-
2 1
CrossRef
-
0
Web of Science
-
2 3
Scopus
Authors (3)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/app9204405
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
Applied Sciences-Basel
no. 9,
ISSN: 2076-3417 - Language:
- English
- Publication year:
- 2019
- Bibliographic description:
- Kwaśniewska A., Rumiński J., Szankin M.: Improving Accuracy of Contactless Respiratory Rate Estimation by Enhancing Thermal Sequences with Deep Neural Networks// Applied Sciences-Basel -Vol. 9,iss. 20 (2019), s.4405-
- DOI:
- Digital Object Identifier (open in new tab) 10.3390/app9204405
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 147 times
Recommended for you
Improving Accuracy of Respiratory Rate Estimation by Restoring High Resolution Features With Transformers and Recursive Convolutional Models
- A. Kwaśniewska,
- M. Szankin,
- J. Rumiński
- + 2 authors