Influence of chemical structure on physicochemical properties and thermal decomposition of the fully bio-based poly(propylene succinate-co-butylene succinate)s - Publication - Bridge of Knowledge

Search

Influence of chemical structure on physicochemical properties and thermal decomposition of the fully bio-based poly(propylene succinate-co-butylene succinate)s

Abstract

In this work, two polyesters and four copolyesters were studied. All materials were synthesized to obtain the monomers dedicated for thermoplastic polyurethane elastomers. For this type of PUR, the monomers should characterize by appropriate selected physicochemical properties and macromolecular structure distribution, which depends on synthesis conditions. The study of chemical structure with extensive and knowledgeable analysis of formed macromolecules of synthesized bio-based copolyesters was conducted with the use of FTIR and 1H NMR spectroscopy and MALDI-ToF mass spectrometry. The results allowed to propose the majority of probable chemical structures of macromolecules formed during synthesis. Moreover, the impact of the structure on the thermal stability of the obtained copolyesters was also determined with the use of thermogravimetric analysis. The temperature of the beginning of thermal decomposition equaled even 330oC. Furthermore, the results of DSC-TG/QMS coupled method confirmed that all prepared polyesters degraded by α and β-hydrogen bond scission mechanisms.

Citations

  • 8

    CrossRef

  • 0

    Web of Science

  • 9

    Scopus

Cite as

Full text

download paper
downloaded 81 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
POLYMER TESTING no. 83,
ISSN: 0142-9418
Language:
English
Publication year:
2020
Bibliographic description:
Parcheta P., Datta J.: Influence of chemical structure on physicochemical properties and thermal decomposition of the fully bio-based poly(propylene succinate-co-butylene succinate)s// POLYMER TESTING -Vol. 83, (2020), s.106337-
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.polymertesting.2020.106337
Bibliography: test
  1. P. Parcheta, J. Datta, Environmental impact and industrial development of biorenewable resources for polyurethanes, Crit. Rev. Environ. Sci. Technol. 47 (2017) 1986-2016, https://doi.org/10.1080/10643389.2017.1400861. open in new tab
  2. M. Ionescu, Chemistry and Technology of Polyols for Polyurethane, First Edit, Rapra Technology Limited, United Kingdom, 2005, https://doi.org/10.1002/ pi.2159. open in new tab
  3. A. Prociak, G. Rokicki, J. Ryszkowska, Materiały Poliuretanowe, Wydawnictwo Naukowe PWN, Warszawa, 2014.
  4. P. Kr� ol, B. Pilch-Pitera, Urethane oligomers as raw materials and intermediates for polyurethane elastomers. Methods for synthesis, structural studies and analysis of chemical composition, Polymer 44 (2003) 5075-5101, https://doi.org/10.1016/ S0032-3861(03)00431-2. open in new tab
  5. A. Saralegi, L. Rueda, B. Fern� andez-D'Arlas, I. Mondragon, A. Eceiza, M. A. Corcuera, Thermoplastic polyurethanes from renewable resources: effect of soft segment chemical structure and molecular weight on morphology and final properties, Polym. Int. 62 (2013) 106-115, https://doi.org/10.1002/pi.4330. open in new tab
  6. A. Eceiza, K. De La Caba, G. Kortaberria, N. Gabilondo, C. Marieta, M.A. Corcuera, I. Mondragon, Influence of molecular weight and chemical structure of soft segment in reaction kinetics of polycarbonate diols with 4,4'-diphenylmethane diisocyanate, Eur. Polym. J. 41 (2005) 3051-3059, https://doi.org/10.1016/j. eurpolymj.2005.06.022. open in new tab
  7. B. Tan, S. Bi, K. Emery, M.J. Sobkowicz, Bio-based poly(butylene succinate-co- hexamethylene succinate) copolyesters with tunable thermal and mechanical properties, Eur. Polym. J. 86 (2017) 162-172, https://doi.org/10.1016/j. eurpolymj.2016.11.017. open in new tab
  8. G.Z. Papageorgiou, D.G. Papageorgiou, Solid-state structure and thermal characteristics of a sustainable biobased copolymer: poly(butylene succinate-co- furanoate), Thermochim. Acta 656 (2017) 112-122, https://doi.org/10.1016/j. tca.2017.09.004. open in new tab
  9. Y. Jiang, A.J.J. Woortman, G.O.R. Alberda van Ekenstein, D.M. Petrovi� c, K. Loos, Enzymatic synthesis of biobased polyesters using 2,5-Bis(hydroxymethyl)furan as the building block, Biomacromolecules 15 (2014) 2482-2493, https://doi.org/ 10.1021/bm500340w. open in new tab
  10. P. Parcheta, J. Datta, Kinetics study of the fully bio-based poly(propylene succinate) synthesis. Functional group approach, Polym. Degrad. Stab. 155 (2018) 238-249, https://doi.org/10.1016/j.polymdegradstab.2018.07.025. open in new tab
  11. P. Parcheta, I. Koltsov, J. Datta, Fully bio-based poly(propylene succinate) synthesis and investigation of thermal degradation kinetics with released gases analysis, Polym. Degrad. Stab. 151 (2018) 90-99, https://doi.org/10.1016/j. polymdegradstab.2018.03.002. open in new tab
  12. P. Parcheta, J. Datta, Structure-rheology relationship of fully bio-based linear polyester polyols for polyurethanes -synthesis and investigation, Polym. Test. 67 (2018) 110-121, https://doi.org/10.1016/j.polymertesting.2018.02.022. open in new tab
  13. P. Parcheta, J. Datta, Structure analysis and thermal degradation characteristics of bio-based poly(propylene succinate)s obtained by using different catalyst amounts, J. Therm. Anal. Calorim. 130 (2017) 197-206, https://doi.org/10.1007/s10973- 017-6376-3. open in new tab
  14. N.O. Pretorius, K. Rode, J.M. Simpson, H. Pasch, Analysis of complex phthalic acid based polyesters by the combination of size exclusion chromatography and matrix- assisted laser desorption/ionization mass spectrometry, Anal. Chim. Acta 808 (2014) 94-103, https://doi.org/10.1016/j.aca.2013.07.030. open in new tab
  15. J.C. Soutif, N.T.H. Doan, V. Montembault, Determination by MALDI-TOF MS of the structures obtained from polytransesterification of diethyl 2,6-pyridinedicarboxy- late and poly(ethylene glycol), Eur. Polym. J. 42 (2006) 126-132, https://doi.org/ 10.1016/j.eurpolymj.2005.07.026. open in new tab
  16. Ł. Kolek, M. Massalska-Arod� z, K. Adrjanowicz, T. Rozwadowski, K. Dychto� n, M. Drajewicz, P. Kula, Molecular dynamics and cold crystallization process in a liquid-crystalline substance with para-, ferro-and antiferro-electric phases as studied by dielectric spectroscopy and scanning calorimetry, J. Mol. Liq. (2019) 111913, https://doi.org/10.1016/j.molliq.2019.111913. open in new tab
  17. L. Yu, H. Liu, K. Dean, L. Chen, Cold crystallization and postmelting crystallization of PLA plasticized by compressed carbon dioxide, J. Polym. Sci., Part B: Polym. Phys. 46 (2008) 2630-2636, https://doi.org/10.1002/polb. open in new tab
  18. A. Hammer, Thermal Analysis of Polymers Selected Applications, Mettler Toledo, (n.d).
  19. E. Fortunati, I. Armentano, Q. Zhou, D. Puglia, A. Terenzi, L.A. Berglund, J. M. Kenny, Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose, Polym. Degrad. Stab. 97 (2012) 2027-2036, https://doi.org/10.1016/j. polymdegradstab.2012.03.027. open in new tab
  20. C.J. Tsai, W.C. Chang, C.H. Chen, H.Y. Lu, M. Chen, Synthesis and characterization of polyesters derived from succinic acid, ethylene glycol and 1,3-propanediol, Eur. Polym. J. 44 (2008) 2339-2347, https://doi.org/10.1016/j. eurpolymj.2008.05.002. open in new tab
  21. G.Z. Papageorgiou, D.N. Bikiaris, Crystallization and melting behavior of three biodegradable poly(alkylene succinates). A comparative study, Polymer 46 (2005) 12081-12092, https://doi.org/10.1016/j.polymer.2005.10.073. open in new tab
  22. X. Hu, T. Su, W. Pan, P. Li, Z. Wang, Difference in solid-state properties and enzymatic degradation of three kinds of poly(butylene succinate)/cellulose blends, RSC Adv. 7 (2017) 35496-35503, https://doi.org/10.1039/c7ra04972b. open in new tab
  23. C.C. Yang, Chemical composition and XRD analyses for alkaline composite PVA polymer electrolyte, Mater. Lett. 58 (2003) 33-38, https://doi.org/10.1016/ S0167-577X(03)00409-9. open in new tab
  24. S.S. Nagane, S. Verma, B.V. Tawade, P.S. Sane, S.A. Dhanmane, P.P. Wadgaonkar, Aromatic polyesters containing pendant azido groups: synthesis, characterization, chemical modification and thermal cross-linking, Eur. Polym. J. 116 (2019) 180-189, https://doi.org/10.1016/j.eurpolymj.2019.04.019. open in new tab
  25. D.N. Bikiaris, K. Chrissafis, K.M. Paraskevopoulos, Investigation of thermal degradation mechanism of an aliphatic polyester using pyrolysis -gas chromatography -mass spectrometry and a kinetic study of the effect of the amount of polymerisation catalyst, Polym. Degrad. Stab. 92 (2007) 525-536, https://doi.org/10.1016/j.polymdegradstab.2007.01.022. open in new tab
  26. K. Chrissafis, K.M. Paraskevopoulos, G.Z. Papageorgiou, D.N. Bikiaris, Thermal decomposition of poly (propylene sebacate) and poly (propylene azelate) biodegradable polyesters: evaluation of mechanisms using TGA, FTIR and GC/MS, J. Anal. Appl. Pyrolysis 92 (2011) 123-130, https://doi.org/10.1016/j. jaap.2011.05.001. open in new tab
  27. K. Chrissafis, K.M. Paraskevopoulos, D.N. Bikiaris, Thermal degradation kinetics of the biodegradable aliphatic polyester, poly(propylene succinate), Polym. Degrad. Stab. 91 (2006) 60-68, https://doi.org/10.1016/j.polymdegradstab.2005.04.028. open in new tab
  28. Z. Terzopoulou, V. Tsanaktsis, M. Nerantzaki, G.Z. Papageorgiou, D.N. Bikiaris, Decomposition mechanism of polyesters based on 2,5-furandicarboxylic acid and aliphatic diols with medium and long chain methylene groups, Polym. Degrad. Stab. 132 (2016) 127-136, https://doi.org/10.1016/j. polymdegradstab.2016.03.006. open in new tab
  29. Z. Terzopoulou, V. Tsanaktsis, M. Nerantzaki, D.S. Achilias, T. Vaimakis, G. Z. Papageorgiou, D.N. Bikiaris, Thermal degradation of biobased polyesters: kinetics and decomposition mechanism of polyesters from 2,5-furandicarboxylic acid and long-chain aliphatic diols, J. Anal. Appl. Pyrolysis 117 (2016) 162-175, https://doi.org/10.1016/j.jaap.2015.11.016. open in new tab
  30. K. Chrissafis, K.M. Paraskevopoulos, D.N. Bikiaris, Thermal degradation mechanism of poly(ethylene succinate) and poly(butylene succinate): comparative study, Thermochim. Acta 435 (2005) 142-150, https://doi.org/10.1016/j. tca.2005.05.011. open in new tab
  31. K. Chrissafis, K.M. Paraskevopoulos, D.N. Bikiaris, Effect of molecular weight on thermal degradation mechanism of the biodegradable polyester poly (ethylene succinate), Thermochim. Acta 440 (2006) 166-175, https://doi.org/10.1016/j. tca.2005.11.002. open in new tab
Verified by:
Gdańsk University of Technology

seen 113 times

Recommended for you

Meta Tags