Influence of Selected Saccharides on the Precipitation of Calcium-Vaterite Mixtures by the CO2 Bubbling Method - Publication - Bridge of Knowledge

Search

Influence of Selected Saccharides on the Precipitation of Calcium-Vaterite Mixtures by the CO2 Bubbling Method

Abstract

Calcium carbonate is a compound existing in living organisms and produced for many biomedical applications. In this work, calcium carbonate was synthesized by a CO2 bubbling method using ammonia as a CO2 absorption promotor. Glucose, fructose, sucrose, and trehalose were added into the reaction mixture to modify characteristics of precipitated calcium carbonate particles. To determine the polymorphic form of produced calcium carbonate particles, Fourier transform infrared spectroscopy (FTIR-ATR) and X-ray diffraction (XRD) analysis were performed. Scanning electron microscopy (SEM) was used to estimate the size and shape of produced particles. Mixtures of vaterite and calcite were synthesized in all experiments. The percentage content of the vaterite in the samples depended on used additive. The highest concentration of vaterite (90%) was produced from a solution containing sucrose, while the lowest concentration (2%) was when fructose was added. Saccharides affected the rate of CO2 absorption, which resulted in a change in the precipitation rate and, therefore, the polymorphic composition of calcium carbonate obtained in the presence of saccharides was more varied.

Citations

  • 1 5

    CrossRef

  • 0

    Web of Science

  • 1 8

    Scopus

Cite as

Full text

download paper
downloaded 75 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Crystals no. 9, edition 2, pages 1 - 10,
ISSN: 2073-4352
Language:
English
Publication year:
2019
Bibliographic description:
Konopacka-Łyskawa D., Czaplicka N., Kościelska B., Łapiński M. S., Gębicki J.: Influence of Selected Saccharides on the Precipitation of Calcium-Vaterite Mixtures by the CO2 Bubbling Method// Crystals. -Vol. 9, iss. 2 (2019), s.1-10
DOI:
Digital Object Identifier (open in new tab) 10.3390/cryst9020117
Bibliography: test
  1. Carr, F.P.; Frederick, D.K. Calcium Carbonate. Kirk-Othmer Encycl. Chem. Technol. 2012, 4, 551-556. open in new tab
  2. Kitamura, M. Strategy for control of crystallization of polymorphs. Cryst. Eng. Comm. 2009, 11, 949-964. [CrossRef] open in new tab
  3. Plummer, N.L.; Busenberg, E. The solubilities of calcite, aragonite and vaterite in CO 2 -H 2 O solutions between 0 and 90 • C, and an evaluation of the aqueous model for the system CaCO 3 -CO 2 -H 2 O. Geochim. Cosmochim. Acta 1982, 46, 1011-1040. [CrossRef] open in new tab
  4. Beck, R.; Andreassen, J.P. The onset of spherulitic growth in crystallization of calcium carbonate. J. Cryst. Growth 2010, 312, 2226-2238. [CrossRef] open in new tab
  5. Rodriguez-Blanco, J.D.; Shaw, S.; Benning, L.G. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale 2011, 3, 265-271. [CrossRef] [PubMed] open in new tab
  6. Rodriguez-Blanco, J.D.; Sand, K.K.; Benning, L.G. ACC and Vaterite as Intermediates in the Solution-Based Crystallization of CaCO 3 . In New Perspecitves on Mineral Nucleation and Growth; Van Driessche, A.E., Kellermeier, M., Benning, L.G., Gebauer, D., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 93-111. open in new tab
  7. Trushina, D.B.; Bukreeva, T.V.; Kovalchuk, M.V.; Antipina, M.N. CaCO 3 vaterite microparticles for biomedical and personal care applications. Mater. Sci. Eng. C 2014, 45, 644-658. [CrossRef] [PubMed] open in new tab
  8. Hou, W.; Feng, Q. Morphology and formation mechanism of vaterite particles grown in glycine-containing aqueous solutions. Mater. Sci. Eng. C 2006, 26, 644-647. [CrossRef] open in new tab
  9. Andreassen, J.-P. Formation mechanism and morphology in precipitation of vaterite-nano-aggregation or crystal growth? J. Cryst. Growth 2005, 274, 256-264. [CrossRef] open in new tab
  10. Shivkumara, C.; Singh, P.; Gupta, A.; Hegde, M.S. Synthesis of vaterite CaCO 3 by direct precipitation using glycine and l-alanine as directing agents. Mater. Res. Bull. 2006, 41, 1455-1460. [CrossRef] open in new tab
  11. Mori, Y.; Enomae, T.; Isogai, A. Preparation of pure vaterite by simple mechanical mixing of two aqueous salt solutions. Mater. Sci. Eng. C 2009, 29, 1409-1414. [CrossRef] open in new tab
  12. Trushina, D.B.; Bukreeva, T.V.; Antipina, M.N. Size-Controlled Synthesis of Vaterite Calcium Carbonate by the Mixing Method: Aiming for Nanosized Particles. Cryst. Growth Des. 2016, 16, 1311-1319. [CrossRef] open in new tab
  13. Han, Y.S.; Hadiko, G.; Fuji, M.; Takahashi, M. Crystallization and transformation of vaterite at controlled pH. J. Cryst. Growth 2006, 289, 269-274. [CrossRef] open in new tab
  14. Konopacka-Łyskawa, D.; Kościelska, B.; Karczewski, J.; Gołąbiewska, A. The influence of ammonia and selected amines on the characteristics of calcium carbonate precipitated from calcium chloride solutions via carbonation. Mater. Chem. Phys. 2017, 193, 13-18. [CrossRef] open in new tab
  15. Udrea, I.; Capat, C.; Olaru, E.A.; Isopescu, R.; Mihai, M.; Mateescu, C.D.; Bradu, C. Vaterite synthesis via gas-liquid route under controlled pH conditions. Ind. Eng. Chem. Res. 2012, 51, 8185-8193. [CrossRef] open in new tab
  16. Dickinson, S.R.; McGrath, K.M. Aqueous precipitation of calcium carbonate modified by hydroxyl-containing compounds. Cryst. Growth Des. 2004, 4, 1411-1418. [CrossRef] open in new tab
  17. Gómez-Morales, J.; Hernández-Hernández, Á.; Sazaki, G.; García-Ruiz, J.M. Nucleation and polymorphism of calcium carbonate by a vapor diffusion sitting drop crystallization technique. Cryst. Growth Des. 2010, 10, 963-969. [CrossRef] open in new tab
  18. Prah, J.; Maček, J.; Dražič, G. Precipitation of calcium carbonate from a calcium acetate and ammonium carbamate batch system. J. Cryst. Growth 2011, 324, 229-234. [CrossRef] open in new tab
  19. Li, Q.; Ding, Y.; Li, F.; Xie, B.; Qian, Y. Solvothermal growth of vaterite in the presence of ethylene glycol, 1,2-propanediol and glycerin. J. Cryst. Growth 2002, 236, 357-362. [CrossRef] open in new tab
  20. Manoli, F.; Dalas, E. Spontaneous precipitation of calcium carbonate in the presence of ethanol, isopropanol and diethylene glycol. J. Cryst. Growth 2000, 218, 359-364. [CrossRef] open in new tab
  21. Konopacka-Łyskawa, D.; Kościelska, B.; Karczewski, J. Effect of some organic solvent-water mixtures composition on precipitated calcium carbonate in carbonation process. J. Cryst. Growth 2015, 418. [CrossRef] open in new tab
  22. Manoli, F.; Kanakis, J.; Malkaj, P.; Dalas, E. The effect of aminoacids on the crystal growth of calcium carbonate. J. Cryst. Growth 2002, 236, 363-370. [CrossRef] open in new tab
  23. Chuajiw, W.; Takatori, K.; Igarashi, T.; Hara, H.; Fukushima, Y. The influence of aliphatic amines, diamines, and amino acids on the polymorph of calcium carbonate precipitated by the introduction of carbon dioxide gas into calcium hydroxide aqueous suspensions. J. Cryst. Growth 2014, 386, 119-127. [CrossRef] open in new tab
  24. Schenk, A.S.; Cantaert, B.; Kim, Y.-Y.; Li, Y.; Read, E.S.; Semsarilar, M.; Armes, S.P.; Meldrum, F.C. Systematic Study of the Effects of Polyamines on Calcium Carbonate Precipitation. Chem. Mater. 2014, 26, 2703-2711. [CrossRef] open in new tab
  25. Kontrec, J.; Kralj, D.; Brečević, L.; Falini, G. Influence of some polysaccharides on the production of calcium carbonate filler particles. J. Cryst. Growth 2008, 210, 4554-4560. [CrossRef] open in new tab
  26. Saraya, M.E.-S.I.; Rokbaa, H.H.A.E.-L. Formation and Stabilization of Vaterite Calcium Carbonate by Using Natural Polysaccharide. Adv. Nanopart. 2017, 6, 158-162. [CrossRef] open in new tab
  27. Liu, Y.; Chen, Y.; Huang, X.; Wu, G. Biomimetic synthesis of calcium carbonate with different morphologies and polymorphs in the presence of bovine serum albumin and soluble starch. Mater. Sci. Eng. C 2017, 79, 457-464. [CrossRef] [PubMed] open in new tab
  28. Lopez-Berganza, J.A.; Espinosa-Marzal, R.M. Mechanistic Approach to Predict the Combined Effects of Additives and Surface Templates on Calcium Carbonate Mineralization. Cryst. Growth Des. 2016, 16, 6186-6198. [CrossRef] open in new tab
  29. Yao, C.-L.; Ding, A.-M. Saccharides with Different Molecular Weight Affects Crystallization of Calcium Carbonate. Asian J. Chem. 2013, 25, 2939-2940. [CrossRef] open in new tab
  30. Polowczyk, I.; Bastrzyk, A.; Fiedot, M. Protein-mediated precipitation of calcium carbonate. Materials 2016, 9, 944. [CrossRef] [PubMed] open in new tab
  31. Vucak, M.; Peric, J.; Pons, M.-N. The Influence of Various Admixtures on the Calcium Carbonate Precipitation from a Calcium Nitrate and Monoethanolamine Solution. Chem. Eng. Technol. 1998, 21, 71-75. [CrossRef] open in new tab
  32. García-Carmona, J.; Gómez-Morales, J.; Fraile-Sainz, J.; Rodríguez-Clemente, R. Morphological characteristics and aggregation of calcite crystals obtained by bubbling CO 2 through a Ca(OH) 2 suspension in the presence of additives. Powder Technol. 2003, 130, 307-315. [CrossRef] open in new tab
  33. Feng, S.; Bagia, C.; Mpourmpakis, G. Determination of proton affinities and acidity constants of sugars. J. Phys. Chem. A 2013, 112, 5211-5219. [CrossRef] [PubMed] open in new tab
  34. Urban, F.; Shaffer, P.A. The acidic property of sugars. J. Biol. Chem. 1932, 94, 697-715. open in new tab
  35. Mani, F.; Peruzzini, M.; Stoppioni, P. CO 2 absorption by aqueous NH 3 solutions: Speciation of ammonium carbamate, bicarbonate and carbonate by a 13 C NMR study. Green Chem. 2006, 8, 995-1000. [CrossRef] open in new tab
  36. Vázquez, G.; Chenlo, F.; Pereira, G. Enhancement of the Absorption of CO 2 in Alkaline Buffers by Organic Solutes: Relation with Degree of Dissociation and Molecular OH Density. Ind. Eng. Chem. Res. 1997, 36, 2353-2358. [CrossRef] open in new tab
  37. Rao, A.; Berg, J.K.; Kellermeier, M.; Gebauer, D. Sweet on biomineralization: Effects of carbohydrates on the early stages of calcium carbonate crystallization. Eur. J. Mineral. 2014, 26, 537-552. [CrossRef] open in new tab
  38. Kontoyannis, C.G.; Vagenas, N.V. Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. Analyst 2000, 125, 251-255. [CrossRef] open in new tab
  39. Vagenas, N.V.; Gatsouli, A.; Kontoyannis, C.G. Quantitative analysis of synthetic calcium carbonate polymorphs using FT-IR spectroscopy. Talanta 2003, 59, 831-836. [CrossRef] open in new tab
  40. Kluge, T.; John, C.M. Technical Note: A simple method for vaterite precipitation for isotopic studies: Implications for bulk and clumped isotope analysis. Biogeosciences 2015, 12, 3289-3299. [CrossRef] open in new tab
  41. Rodriguez-Navarro, C.; Jimenez-Lopez, C.; Rodriguez-Navarro, A.; Gonzalez-Muñoz, M.T.; Rodriguez-Gallego, M. Bacterially mediated mineralization of vaterite. Geochim. Cosmochim. Acta 2007, 71, 1197-1213. [CrossRef] open in new tab
  42. Kralj, D.; Brecević, L.; Nielsen, A.E. Vaterite growth and dissolution in aqueous solution II. Kinetics of dissolution. J. Cryst. Growth 1994, 143, 269-276. [CrossRef] open in new tab
  43. Gebauer, D.; Cölfen, H.; Verch, A.; Antonietti, M. The multiple roles of additives in CaCO 3 crystallization: A quantitative case study. Adv. Mater. 2009, 21, 435-439. [CrossRef] open in new tab
Sources of funding:
  • Statutory activity/subsidy
Verified by:
Gdańsk University of Technology

seen 157 times

Recommended for you

Meta Tags