Integrated Experimental and Theoretical Approach for Efficient Design and Synthesis of Gold-Based Double Halide Perovskites
Abstract
Applied cutting-edge electronic structure and phonon simulations provide a reliable knowledge about the stability of perovskite structures and their electronic properties, which are crucial for design of effective nanomaterials. Gold is one of the exceptional elements, which can exist both as a monovalent and a trivalent ion in the B site of a double perovskite such as A2BI BIIIX6. However, until now, electronic properties of Cs2AuI AuIIIX6 have not been sufficiently explored and this material was never synthesized using Au1+ and Au3+ precursors in the preparation route. Here, computational simulations combined with an experimental study provide new insight into the properties and synthesis route of Cs2AuI AuIIIX6 (X = Cl, Br, and I) perovskites. First-principles calculations reveal that tetragonal Cs2AuI AuIIIX6 (X = I, Br, Cl) molecules present a band gap of 1.10, 1.15, and 1.40 eV, respectively. Application of novel approaches in the simulations of the VB-XPS for Cs2AuI AuIIICl6 allows replication of the observed spectrum and provides strong evidence of the reliability of the obtained results for the other perovskites Cs2AuI AuIIIX6,X= Br, I. Following theoretical findings, a one-step preparation route of the Cs2AuI AuIIICl6 is developed using a combination of monovalent and trivalent gold precursors at a relatively low temperature. It should be emphasized that this is the first synthesis of this material at low temperatures, allowing for obtaining highly crystalline Cs2Au2Cl6 particles with controlled morphology and without gold impurities. The band gap of synthesized Cs2AuI AuIIICl6 is extended into the NIR spectral range, where most other double perovskites are limited to higher energies, limiting their usage in single junction solar cells or in photocatalysis. The assynthesized Cs2AuI AuIIICl6 exhibits high efficiency in a photocatalytic toluene degradation reaction under visible light irradiation. The developed approach provides information necessary for structure manipulation at the early stage of its synthesis and offers a new and useful guidance for design of novel improved lead-free inorganic halide perovskite with interesting optical and photocatalytic properties.
Citations
-
1 6
CrossRef
-
0
Web of Science
-
1 6
Scopus
Authors (10)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.1021/acs.jpcc.0c07782
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
Journal of Physical Chemistry C
no. 124,
pages 26769 - 26779,
ISSN: 1932-7447 - Language:
- English
- Publication year:
- 2020
- Bibliographic description:
- Bajorowicz B., Mikolajczyk A., Pinto H. P., Miodyńska M., Lisowski W., Klimczuk T., Kaplan-Ashiri I., Kazes M., Oron D., Zaleska-Medynska A.: Integrated Experimental and Theoretical Approach for Efficient Design and Synthesis of Gold-Based Double Halide Perovskites// Journal of Physical Chemistry C -Vol. 124,iss. 49 (2020), s.26769-26779
- DOI:
- Digital Object Identifier (open in new tab) 10.1021/acs.jpcc.0c07782
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 76 times
Recommended for you
Effects of Bromine Doping on the Structural Properties and Band Gap of CH3NH3Pb(I1–xBrx)3 Perovskite
- M. Martynow,
- D. Głowienka,
- Y. Galagan
- + 1 authors
Understanding the Electronic Structure and Optical Properties of Vacancy-Ordered Double Perovskite A2BX6 for Optoelectronic Applications
- M. Faizan,
- X. Wang,
- S. A. M. Abdelmohsen
- + 7 authors
Lead-free bismuth-based perovskites coupled with g–C3N4: A machine learning based novel approach for visible light induced degradation of pollutants
- M. Miodyńska,
- A. Mikolajczyk,
- P. Mazierski
- + 4 authors