Abstract
The prediction of fuel consumption and resulting transportation costs is a crucial stage in ship design, particularly for conditions involving motion in waves. This study investigates the real-time fuel consumption of a container ship when sailing in waves. The overall ship performance is evaluated using a novel non-linear coupled hull-engine-propeller interaction model. A series of towing tank experiments for hull resistance in waves and propeller performance are conducted. The ship engine is mathematically modelled by a quasi-steady-state model equipped with a linear Proportional-Integrator (PI) governor. Various scenarios of shipping transportation are studied, and the resulting instantaneous fuel consumptions and their correlation to other dynamic particulars are demonstrated. Additionally, daily fuel consumption and fuel cost per voyage distance are presented. It is also shown that the controller can effectively adjust the fuel rate, resulting in minimum fuel consumption. The study concludes that there is no correlation between fuel consumption and the frequency of fuel rates. The present framework and mathematical model can also be employed for ship design and existing ships to predict the total required energy per voyage.
Citations
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Authors (3)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.2478/pomr-2024-0009
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach
- Published in:
-
Polish Maritime Research
pages 85 - 93,
ISSN: 1233-2585 - Language:
- English
- Publication year:
- 2024
- Bibliographic description:
- Ghaemi M., Zeraatgar H., Barjasteh M.: Investigating Fuel Injection Strategies to Enhance Ship Energy Efficiency in Wave Conditions// Polish Maritime Research -Vol. 31,iss. 1 (2024), s.85-93
- DOI:
- Digital Object Identifier (open in new tab) 10.2478/pomr-2024-0009
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 82 times