Investigation of an elutable N-propylphosphonic acid chitosan derivative composition with a chitosan matrix prepared from carbonic acid solution - Publication - Bridge of Knowledge

Search

Investigation of an elutable N-propylphosphonic acid chitosan derivative composition with a chitosan matrix prepared from carbonic acid solution

Abstract

Porous chitosan composites using CO2 dissolution procedure and including water soluble N-propylphosphonic chitosan derivative (p-CHI) were obtained and characterized. In contrast to the control material, composites containing modified chitosan distinguished by a rapid moisture absorption and good adhesion to the skin. The FTIR analysis confirmed the presence of propylphosphonic group in the structure of the polymer. The porosity of the materials was in the range 55–77% and decreased with increasong amount of modified chitosan in materials. Solubility of composites was dependent on the content of p-CHI in scaffolds (40%, 25% and 15%) and reached values 11%, 9% and 6,5%, respectively. The values of other parameters like swelling degree (30 g/g) good antioxidant and antimicrobial properties (almost 100% reduction of S.aureus, E.coli and C. albicans growth) and low in vitro cytotoxicity against fibroblasts were highly advantageous for possible biomedical applications of the composites.

Citations

  • 1 0

    CrossRef

  • 0

    Web of Science

  • 9

    Scopus

Cite as

Full text

download paper
downloaded 118 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
CARBOHYDRATE POLYMERS no. 179, pages 196 - 206,
ISSN: 0144-8617
Language:
English
Publication year:
2018
Bibliographic description:
Mania S., Tylingo R., Augustin E., Gucwa K. M., Szwacki J., Staroszczyk H.: Investigation of an elutable N-propylphosphonic acid chitosan derivative composition with a chitosan matrix prepared from carbonic acid solution// CARBOHYDRATE POLYMERS. -Vol. 179, (2018), s.196-206
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.carbpol.2017.09.082
Bibliography: test
  1. Ahmed, S., & Ikram, S. (2015). Chitosan & its derivatives: A review in recent innovations. International Journal of Pharmaceutical Sciences and Research, 6, 14-30. open in new tab
  2. Alves, N. M., & Mano, J. F. (2008). Chitosan derivatives obtained by chemical mod- ifications for biomedical and environmental applications. International Journal of Biological Macromolecules, 43, 401-414. open in new tab
  3. Augustine, J. K., Atta, R. N., Ramappa, B. K., & Boodappa, C. (2009). Propylphosphonic anhydride (T3P ® ): A remarkebly efficient reagent for the one-pot transformation of aromatic, heteroaromatic, and aliphatic aldehydes to nitriles. Tetrahedron, 20, 3378-3382. open in new tab
  4. Bi, L., Cao, Z., Hu, Y., Song, Y., Yu, L., Yang, B., et al. (2011). Effects of different cross- linking conditions on the properties of genipin-cross-linked chitosan/collagen scaf- folds for cartilage tissue engineering. Journal of Materials Science: Materials in Medicine, 22, 51-62. open in new tab
  5. Chien, P. J., Sheu, F., Huang, W. T., & Su, M. S. (2007). Effect of molecular weight of chitosans on their antioxidative activities in apple juice. Food Chemistry, 102, 1192-1198. open in new tab
  6. Cullen, B., Watt, P. W., Lundqvist, C., Silcock, D., Schmidt, R. J., Bogan, D., et al. (2002). The role of oxidised regenerated cellulose/collagen in chronic wound repair and its potential mechanism of action. International Journal of Biochemistry & Cell Biology, 34, 1544-1556. open in new tab
  7. Davidivich-Pinhas, M., Danin-Poleg, Y., Kashi, Y., & Bianco-Peled, H. (2014). Modified chitosan: A step toward improving the properties of antibacterial food packages. Food Packaging and Shelf Life, 1, 160-169. open in new tab
  8. Dutta, P. K., Dutta, J., & Tripathi, V. S. (2004). Chitin and chitosan: Chemistry, properties and applications. Journal of Scientific & Industrial Research, 63, 20-31. open in new tab
  9. El-Sayed, N. S., Shirazi, A. N., El-Meligy, M. G., El-Ziaty, A. K., Nagieb, Z. A., Parang, K., et al. (2016). Design, synthesis, and evaluation of chitosan conjugated GGRGDSK peptides as a cancer cell-targeting molecular transporter. International Journal of Biological Macromolecules, 87, 611-622. open in new tab
  10. Fernandez, J. G., & Ingber, D. E. (2014). Manufacturing of large-scale functional objects using biodegradable chitosan bioplastic. Macromolecular Materials and Engineering. http://dx.doi.org/10.1002/mame.201300426. open in new tab
  11. Fitzmaurice, S. D., Sivaman, R. K., & Isseroff, R. R. (2011). Antioxidant therapies for wound healing: A clinical guide to currently commercially available products. Skin Pharmacologyand Physiology, 24(2011), 113-126. open in new tab
  12. Fujita, M., Kinoshita, M., Ishihara, M., Kanatani, Y., Morimoto, Y., Simiu, M., et al. (2004). Inhibition of vascular prosthetic graft infection using a photocrosslinkable chitosan hydrogel. Journal of Surgical Research, 121, 135-140. open in new tab
  13. Garcia, A. L. L. (2007). T3P: A convenient and useful reagent in organic synthesis. Synlett, 8, 1328-1329.
  14. Gorczyca, G., Tylingo, R., Szweda, P., Augustin, E., Sadowska, M., & Milewski, S. (2014). Preparation and characterization of genipin cross-linked porous chitosan-collagen- gelatin scaffolds using chitosan-CO2 solution. Carbohydrate Polymers, 102, 901-911. open in new tab
  15. Gorczyca, G. (2015). Otrzymywanie i charakterystyka nowych biomateriałów o aktywności przeciwdrobnoustrojowej na bazie chitozanu, kolagenu i żelatyny PhD thesis. Gdansk: Faculty of Chemistry, Gdansk University of Technology.
  16. Goy, R. C., Morais, S. T. B., & Assis, O. B. G. (2016). Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E: coli and S. aureus growth. Brazilian Journal of Pharmacognosy, 26, 122-127. open in new tab
  17. Haider, J., Majeed, H., Williams, P. A., Safdar, W., & Zhong, F. (2017). Formation of chitosan nanoparticles to encapsulate krill oil (Euphausiasuperba) for application as a dietary supplement. Food Hyrdocolloids, 63, 27-34. open in new tab
  18. Heras, A., Rodriguez, N. M., Ramos, V. M., & Agullo, E. (2001). N-methylene phosphonic chitosan: a novel soluble derivative. Carbohydrate Polymers, 44, 1-8. open in new tab
  19. Hoyer, B., Bernhardt, A., Heinemann, S., Stachel, I., Meyer, M., & Gelinsky, M. (2012). Biomimetically mineralized salmon collagen scaffolds for application in bone tissue engineering. Biomacromolecules, 13, 1059-1066. open in new tab
  20. Ikeda, T., Ikeda, K., Yamamoto, K., Ishizaki, H., Yoshizawa, Y., Yanagiguchi, K., et al. (2014). Fabrication and characteristics of chitosan sponge as a tissue engineering scaffold. BioMed Research International, 2014, 1-8. open in new tab
  21. Iliewa, D., Jivov, B., Bogachev, G., Petkov, C., Penkov, I., & Dimitriev, Y. (2001). Infrared and Raman spectra of Ga 2 O 3 -P 2 O 5 glasses. Journal of Non-Crystalline Solids, 283, 195-202. open in new tab
  22. Inoue, H., Yoshioka, T., & Hotta, Y. (1988). Membrane-associated phospholipase C of Drosophila retina. Journal of Biochemistry, 103, 91-94. open in new tab
  23. JIS L (1902). Standard: Wound dressings with antimicrobial properties − Requirements and test methods for determining bactericidal activity of antimicrobial wound care dressings. open in new tab
  24. Kasaai, M. R. (2010). Determination of the degree of N-acetylation for chitin and chitosan by various NMR spectroscopy techniques: A review. Carbohydrate Polymers, 79, 801-810. open in new tab
  25. Kim, U. J., Park, J., Kim, H. J., Wada, M., & Kaplan, D. L. (2005). Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials, 26, 2775-2785. open in new tab
  26. Kumar, R., Isloor, A. M., Ismail, A. F., & Matsuura, T. (2013). Synthesis and character- ization of novel water soluble derivative of Chitosan as an additive for polysulphone ultrfiltration membrane. Journal of Membrane Science, 440, 140-147. open in new tab
  27. Kumar, M. N. V. R. (2000). A review of chitin and chitosan applications. Reactive and Functional Polymers, 46, 1-27.
  28. Kumirska, J., Czerwicka, M., Kaczyński, Z., Bchowska, A., Brzozowski, K., & Thoeming, J. (2010). Application of spectroscopic methods for structural analysis of chitin and chitosan. Marine Drugs, 29, 1567-1636. open in new tab
  29. Michela, M., Silva, R., Franca, F., Maria, C. B., Giuseppina, S., Theodora, C., et al. (2016). Spongelike dressingd based on the Association of Chitosan and Sericin for the Treatment of Chronic Skin Ulcers. I. Desing of experiments assisted development. Journal of Pharmacology Science, 105, 1180-1187.
  30. Moreno-Vásquez, M. J., Valenzuela-Buitimea, E. L., Plascencia-Jatomea, M., Encinas- Encinas, J. C., Rodriguez-Félix, F., Sánchez-Valdes, A., et al. (2017). Functionlization of chitosan by a free radical reaction: Characterization, antioxidant and antibacterial potential. Carbohydrate Polymers, 155, 117-127. open in new tab
  31. Mourya, V. K., & Inamdar, N. N. (2008). Chitosan-modifications and applications: Opportunities galore. Reactive and Functional Polymers, 68, 1013-1051. open in new tab
  32. Muzzarelli, R. A. A. (2009). Chitins and chitosans for the repair of wounded skin. Carbohydrate Polymers, 76, 167-182. open in new tab
  33. No, H. K., Meyers, S. P., Prinyawiwatkul, W., & Xu, Z. (2007). Applications of chitosan for improvement of quality and shelf life of foods: A review. Journal of Food Science, 72, 87-100. open in new tab
  34. Pariente, J. L., Kim, B. S., & Atala, A. (2001). In vitro biocompatibility assessment of naturally derived and synthetic biomaterials using normal human urothelial cells. Journal of Biomedical Materials Research, 55, 33-39. open in new tab
  35. Piątkowski, M., Bogdał, D., Radomski, P., & Jarosiński, A. (2010). Wykorzystanie che- micznie modyfikowanego chitozanu w sorpcji jonów metali. Czasopismo Techniczne. Chemia, 10, 257-266.
  36. Pokhrel, S., Yadav, P. N., & Adhikari, P. (2015). Application of chitin and chitosan in industry and medical science: A review. Nepal Journal of Science and Technology, 16, 99-104. open in new tab
  37. Puoci, F., Iemma, F., Curcio, M., Parisi, O. I., Cirillo, G., Spizzirri, U. G., et al. (2008). Synthesis of methacrylic-ferulic acid copolymer with antioxidant properties by single- step free radical polymerization. Journal of Agricultural and Food Chemistry, 56, 10646-10650. open in new tab
  38. Rajalakshmi, A., Krithiga, N., & Jayachitra, A. (2013). Antioxidant activity of the chitosan extracted from shrimp exoskeleton. Journal of Scientific Research, 16, 1446-1451. open in new tab
  39. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26, 1231-1237. open in new tab
  40. Roberts, G. A. F. (1992). Chitin chemistry. London: MacMillan. open in new tab
  41. Roy, S., Khanna, S., Nallu, K., Hunt, T. K., & & Sen, C. K. (2006). Dermal wound healing is subject to redox control. Molecular Therapy, 13, 211-220. open in new tab
  42. Sakai, Y., Hayano, K., Yoshioka, H., & Yoshioka, H. (2001). A novel method of dissolving chitosan in water for industrial application. Polymer Journal, 33, 640-642. open in new tab
  43. Sakai, Y., Hayano, K., Yoshioka, H., Fuijeda, T., Saito, K., & Yousjioka, H. (2002). open in new tab
  44. Chitosan-coating of cellulosic materials using an aqueous chitosan-CO2 solution. Polymer Journal, 34, 144-148. open in new tab
  45. Shen, X., Nagai, N., Murata, M., Nishimura, D., Sugi, M., & Munekata, M. (2008). Development of salmon milt DNA/salmon collagen composite for wound dressing. Journal of Material Science: Material Medicine, 19, 3473-3479. open in new tab
  46. Silverstein, R. M., Webster, F. X., & Kiemle, D. J. (2016). Spektroskopowe metody identy- fikacji związków organicznych (2nd ed.). Warszawa: PWN.
  47. Thanou, M., & Junginger, H. E. (2005). Pharmaceutical applications of chitosan and derivatives. In S. Dumitriu (Ed.). Polysaccharides. Structural diversity and functional versatility (pp. 661-677). New York: Marcel Dekker Publishing Inc. open in new tab
  48. Tiğh, R. S., & Karakecili (2007). A In vitro characterization of chitosan scaffolds: Influence of composition and deacethylation degree. Journal of Material Science:Materials and Medicine, 18, 1665-1674.
  49. Tylingo, R., Gorczyca, G., Mania, S., Szweda, P., & Milewski, S. (2016). Preparation and characterization of porous scaffolds form chitosan-collagen-gelatin composite. Reactive and Functional Polymers, 103, 131-140. open in new tab
  50. Tylingo, R., Mania, S., & Szwacki, J. (2016). A novel method for drop in drop edible oils encapsulation with chitosan using a coaxial technique. Reactive and Functional Polymers, 100, 64-72. open in new tab
  51. Uragami, T., & Tokura, S. (2010). Material science of chitin and chitosan. Springer51-79. open in new tab
  52. Valente, J. F. A., Gaspar, V. M., Antunes, B. P., Counthino, P., & Correia, I. J. (2013). Microencapsulated chitosan-dextran sulfate nanoparticles for controled delivery of bioactive molecules and cells in bone regeneration. Polymer, 54, 5-25. open in new tab
  53. Yen, M. T., Tseng, Y. H., Li, R. C., & Mau, J. L. (2007). Antioxidant properties of fungal chitosan from shiitake stipes. LWT-Food Science and Technology, 40, 255-261. open in new tab
  54. Yen, M. T., Yang, J. H., & Mau, J. L. (2008). Antioxidant properties of chitosan from crab shells. Carbohydrate Polymers, 74, 840-844. open in new tab
  55. Zhang, Z., Yang, D., & Nie, J. (2008). Chitosan/polyethylene glycol diacrylate films as potential wound dressing material. Journal of Biological Macromolecules, 43, 456-462. open in new tab
Verified by:
Gdańsk University of Technology

seen 267 times

Recommended for you

Meta Tags