La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ oxygen electrodes for solid oxide cells prepared by polymer precursor and nitrates solution infiltration into gadolinium doped ceria backbone - Publication - Bridge of Knowledge

Search

La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ oxygen electrodes for solid oxide cells prepared by polymer precursor and nitrates solution infiltration into gadolinium doped ceria backbone

Abstract

Infiltration is a method, which can be applied for the electrode preparation. In this paper oxygen electrode is prepared solely by the infiltration of La0.6Sr0.4Co0.2Fe0.8O3‐δ (LSCF) into Ce0.8Gd0.2O2-δ (CGO) backbone. The use a polymer precursor as an infiltrating medium, instead of an aqueous nitrate salts solution is presented. It is shown that the polymer forms the single-phase perovskite at 600 °C, contrary to the nitrates solution. As a result, obtained area specific resistance (ASR) is lowered from 0.21 Ω cm2 to 0.16 Ω cm2 at 600 °C. More than 35% of LSCF in the oxygen electrode decreases the performance.

Citations

  • 2 2

    CrossRef

  • 0

    Web of Science

  • 2 5

    Scopus

Cite as

Full text

download paper
downloaded 105 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY no. 37, edition 11, pages 59 - 64,
ISSN: 0955-2219
Language:
English
Publication year:
2017
Bibliographic description:
Chrzan A., Karczewski J., Gazda M., Szymczewska D., Jasiński P.: La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-δ oxygen electrodes for solid oxide cells prepared by polymer precursor and nitrates solution infiltration into gadolinium doped ceria backbone// JOURNAL OF THE EUROPEAN CERAMIC SOCIETY. -Vol. 37, iss. 11 (2017), s.59-64
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.jeurceramsoc.2017.04.032
Bibliography: test
  1. O.Z. Sharaf, M.F. Orhan, An overview of fuel cell technology: fundamentals and applications, Renew. Sustain. Energy Rev. 32 (2014) 810-853, http://dx. doi.org/10.1016/j.rser.2014.01.012. open in new tab
  2. D. Szymczewska, J. Karczewski, B. Bochentyn, A. Chrzan, M. Gazda, P. Jasinski, Investigation of catalytic layers on anode for solid oxide fuel cells operating with synthetic biogas, Solid State Ionics 271 (2015) 109-115, http://dx.doi. org/10.1016/j.ssi.2014.10.023. open in new tab
  3. S.D. Ebbesen, X. Sun, M.B. Mogensen, Understanding the processes governing performance and durability of solid oxide electrolysis cells, Faraday Discuss. 182 (2015) 393-422, http://dx.doi.org/10.1039/c5fd00032g. open in new tab
  4. Y. Huang, J.M. Vohs, R.J. Gorte, SOFC cathodes prepared by infiltration with various LSM precursors, Electrochem. Solid-State Lett. 9 (2006) A237, http:// dx.doi.org/10.1149/1.2183867. open in new tab
  5. M. Shah, S.A. Barnett, Solid oxide fuel cell cathodes by infiltration of La0.6Sr0.4Co0.2Fe0.8O3-␦ into Gd-doped Ceria, Solid State Ionics 179 (2008) 2059-2064, http://dx.doi.org/10.1016/j.ssi.2008.07.002. open in new tab
  6. A.J. Samson, M. Søgaard, R. Knibbe, N. Bonanos, High performance cathodes for solid oxide fuel cells prepared by infiltration of La0.6Sr0.4CoO3-␦ into Gd-doped ceria, J. Electrochem. Soc. 158 (2011) B650, http://dx.doi.org/10. 1149/1.3571249. open in new tab
  7. T. Klemensø, C. Chatzichristodoulou, J. Nielsen, F. Bozza, K. Thydén, R. Kiebach, S. Ramousse, Characterization of impregnated GDC nano structures and their functionality in LSM based cathodes, Solid State Ionics 224 (2012) 21-31, http://dx.doi.org/10.1016/j.ssi.2012.07.011. open in new tab
  8. R. Kiebach, C. Knöfel, F. Bozza, T. Klemensø, C. Chatzichristodoulou, Infiltration of ionic-, electronic-and mixed-conducting nano particles into La0.75Sr0.25MnO3-Y0.16Zr0.84O2 cathodes -a comparative study of performance enhancement and stability at different temperatures, J. Power Sources 228 (2013) 170-177, http://dx.doi.org/10.1016/j.jpowsour.2012.11. 070. open in new tab
  9. R. Küngas, F. Bidrawn, E. Mahmoud, J.M. Vohs, R.J. Gorte, Evidence of surface-reaction rate limitations in SOFC composite cathodes, Solid State Ionics 225 (2012) 146-150, http://dx.doi.org/10.1016/j.ssi.2012.04.030. open in new tab
  10. M. Shah, P.W. Voorhees, S.A. Barnett, Time-dependent performance changes in LSCF-infiltrated SOFC cathodes: the role of nano-particle coarsening, Solid State Ionics 187 (2011) 64-67, http://dx.doi.org/10.1016/j.ssi.2011.02.003. open in new tab
  11. S. Lee, K. Gerdes, Functional nanostructure engineering of SOFC cathode by solution infiltration, ECS Electrochem. Lett. 4 (2015) F17-F20, http://dx.doi. org/10.1149/2.0051503eel. open in new tab
  12. H. Xu, H. Zhang, A. Chu, An investigation of oxygen reduction mechanism in nano-sized LSCF-SDC composite cathodes, Int. J. Hydrogen Energy 41 (2016) 22415-22421, http://dx.doi.org/10.1016/j.ijhydene.2016.09.153. open in new tab
  13. C. Nicollet, A. Flura, V. Vibhu, A. Rougier, J.-M. Bassat, J.-C. Grenier, An innovative efficient oxygen electrode for SOFC: Pr6O11 infiltrated into Gd-doped ceria backbone, Int. J. Hydrogen Energy 41 (2016) 15538-15544, http://dx.doi.org/10.1016/j.ijhydene.2016.04.024. open in new tab
  14. K. Chen, N. Ai, S.P. Jiang, Performance and structural stability of Gd0.2Ce0.8O1.9 infiltrated La0.8Sr0.2MnO3 nano-structured oxygen electrodes of solid oxide electrolysis cells, Int. J. Hydrogen Energy 39 (2014) 10349-10358, http://dx.doi.org/10.1016/j.ijhydene.2014.05.013. open in new tab
  15. Y. Tan, N. Duan, A. Wang, D. Yan, B. Chi, N. Wang, J. Pu, J. Li, Performance enhancement of solution impregnated nanostructured La0.8Sr0.2Co0.8Ni0.2O3-?? oxygen electrode for intermediate temperature solid oxide electrolysis cells, J. Power Sources 305 (2016) 168-174, http://dx. doi.org/10.1016/j.jpowsour.2015.11.094. open in new tab
  16. A. Chrzan, S. Ovtar, P. Jasinski, M. Chen, A. Hauch, High performance LaNi 1-x Co x O 3-␦ (x = 0.4 to 0.7) infiltrated oxygen electrodes for reversible solid oxide cells, J. Power Sources 353 (2017) 67-76, http://dx.doi.org/10.1016/j. jpowsour.2017.03.148. open in new tab
  17. A. Buyukaksoy, V. Petrovsky, F. Dogan, Efficient cathodes for solid oxide fuel cells prepared by polymeric precursor infiltration, J. Electrochem. Soc. 159 (2012) B68, http://dx.doi.org/10.1149/2.042201jes. open in new tab
  18. R. Kiebach, P. Zielke, J.V.T. Høgh, K. Thydén, H.J. Wang, R. Barford, P.V. Hendriksen, Infiltration of SOFC stacks: evaluation of the electrochemical performance enhancement and the underlying changes in the microstructure, Fuel Cells 16 (2016) 80-88, http://dx.doi.org/10.1002/fuce.201500107. open in new tab
  19. M.P. Pechini, N. Adams, Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor, United States Pat. Off. (1967) 01-07. http://scholar.google.com/scholar?hl=en &btnG=Search&q=intitle:Method+of+preparing+lead+and+alkaline+earth +titanates+and+niobates+and+coating+method+using+the+same+to +form+a+capactor#0. open in new tab
  20. S. Molin, M. Gazda, P. Jasinski, Conductivity improvement of Ce0.8Gd0.2O1.9 solid electrolyte, J. Rare Earths 27 (2009) 655-660, http://dx.doi.org/10.1016/ S1002-0721(08)60309-9. open in new tab
  21. A. Chrzan, J. Karczewski, D. Szymczewska, P. Jasinski, Nanocrystalline cathode functional layer for SOFC, Electrochim. Acta 225 (2017) 168-174, http://dx. doi.org/10.1016/j.electacta.2016.12.128. open in new tab
  22. P. Jasinski, V. Petrovsky, T. Suzuki, T. Petrovsky, H.U. Anderson, Electrical properties of YSZ films prepared by net shape technology, J. Electrochem. Soc. 152 (2005) A454, http://dx.doi.org/10.1149/1.1846711. open in new tab
  23. P. Jasinski, S. Molin, M. Gazda, V. Petrovsky, H.U. Anderson, Applications of spin coating of polymer precursor and slurry suspensions for Solid Oxide Fuel Cell fabrication, J. Power Sources 194 (2009) 10-15, http://dx.doi.org/10. 1016/j.jpowsour.2008.12.054. open in new tab
  24. S.H. Jensen, A. Hauch, P.V. Hendriksen, M. Mogensen, N. Bonanos, T. Jacobsen, A method to separate process contributions in impedance spectra by variation of test conditions, J. Electrochem. Soc. 154 (2007) B1325, http://dx. doi.org/10.1149/1.2790791. open in new tab
  25. P. Plonczak, M. Joost, J. Hjelm, M. Søgaard, M. Lundberg, P.V. Hendriksen, A high performance ceria based interdiffusion barrier layer prepared by spin-coating, J. Power Sources 196 (2011) 1156-1162, http://dx.doi.org/10. 1016/j.jpowsour.2010.08.108. open in new tab
  26. A. Díaz-Parralejo, A.L. Ortiz, R. Caruso, Effect of sintering temperature on the microstructure and mechanical properties of ZrO2-3mol%Y2O3 sol-gel films, Ceram. Int. 36 (2010) 2281-2286, http://dx.doi.org/10.1016/j.ceramint.2010. 07.033. open in new tab
  27. L.J. Gauckler, D. Beckel, B.E. Buergler, E. Jud, U.P. Muecke, M. Prestat, J.L.M. Rupp, J. Richter, Solid oxide fuel cells systems and materials, Chimia (Aarau) 58 (2004) 837-850, http://dx.doi.org/10.2533/000942904777677047. open in new tab
  28. J. Ju, Y. Xie, Z. Wang, Y. Zhang, C. Xia, Electrical performance of nano-structured La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3-␦ impregnated onto yttria-stabilized zirconia backbone, J. Electrochem. Soc. 163 (2016) F393-F400, http://dx.doi.org/10.1149/2.0751605jes. open in new tab
  29. F. Baumann, J. Fleig, H. Habermeier, J. Maier, Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3-␦ model electrodes, Solid State Ionics 177 (2006) 1071-1081, http://dx.doi.org/10.1016/j.ssi.2006.02.045. open in new tab
  30. N. Hildenbrand, B.A. Boukamp, P. Nammensma, D.H.A. Blank, Improved cathode/electrolyte interface of SOFC, Solid State Ionics 192 (2011) 12-15, http://dx.doi.org/10.1016/j.ssi.2010.01.028. open in new tab
  31. M. Liu, Z. Liu, M. Liu, L. Nie, Fabrication and characterization of functionally-graded LSCF cathodes by tape casting, Int. J. Hydrogen Energy 38 (2013) 1082-1087, http://dx.doi.org/10.1016/j.ijhydene.2012.10.048. open in new tab
  32. A.J. Samson, M. Søgaard, P. Hjalmarsson, J. Hjelm, N. Bonanos, S.P.V. Foghmoes, T. Ramos, Durability and performance of high performance infiltration cathodes, Fuel Cells 13 (2013) 511-519, http://dx.doi.org/10.1002/ fuce.201200183. open in new tab
  33. T.E. Burye, J.D. Nicholas, Precursor solution additives improve desiccated La0.6Sr0.4Co0.8Fe0.2O3-x infiltrated solid oxide fuel cell cathode performance, J. Power Sources 301 (2016) 287-298, http://dx.doi.org/10. 1016/j.jpowsour.2015.10.012. open in new tab
Verified by:
Gdańsk University of Technology

seen 117 times

Recommended for you

Meta Tags