Abstract
Infertility affects around 15% of couples worldwide. Male fertility problems include poor sperm quality and low sperm count. The advanced fertility treatment methods like ICSI are nowadays supported by vision systems to assist embryologists in selecting good quality sperm. Computer-Assisted Semen Analysis (CASA) provides quantitative and qualitative sperm analysis concerning concentration, motility, morphology, vitality, and fragmentation. However, fertility assessment algorithms often neglect individual spermatozoon tail and its beating patterns because recognizing the tails in blurry microscopic images reliably is challenging. In this article, we propose that models trained with head and tail part classes can better localize parts and segment the whole spermatozoon objects. Usually, the training of segmentation sperm models is supported by image-level augmentation. We argue that models guided by class-specific data augmentation attend to less discriminative sperm parts. To demonstrate this, we decouple the augmentation into object-level and background augmentation for the sperm part segmentation problem. Our proposed method outperforms state-of-the-art methods on the SegSperm dataset. Moreover, our ablation studies confirm the effectiveness of the proposed part-based object representation and augmentation.
Citations
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Authors (5)
Cite as
Full text
full text is not available in portal
Keywords
Details
- Category:
- Conference activity
- Type:
- publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
- Language:
- English
- Publication year:
- 2024
- Bibliographic description:
- Jankowski M., Lewandowska E., Talbot H., Węsierski D., Węsierska A.: Learning sperm cells part segmentation with class-specific data augmentation// / : , 2024,
- DOI:
- Digital Object Identifier (open in new tab) 10.1109/hsi61632.2024.10613572
- Sources of funding:
-
- Free publication
- Verified by:
- Gdańsk University of Technology
seen 26 times